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Two-point correlation function of three-dimensional O(N) models:
The critical limit and anisotropy
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In three-dimensionaD(N) models, we investigate the low-momentum behavior of the two-point Green’s
function G(x) in the critical region of the symmetric phase. We consider physical systems whose criticality is
characterized by a rotationally invariant fixed point. Several approaches are exploited, such as strong-coupling
expansion of latticeN-vector model, and N expansion, field-theoretical methods within thé continuum
formulation. Non-Gaussian corrections to the universal low-momentum behavie(>9f are evaluated, and
found to be very small. In nonrotationally invariant physical systems Wi(lN)-invariant interactions, the
vanishing of the spatial anisotropy approaching the rotationally invariant fixed point is described by a critical
exponentp, which is universal and is related to the leading irrelevant operator breaking rotational invariance.
At N=x one findsp=2. We show that, for all values ™=0, p=2.[S1063-651X98)03301-7

PACS numbg(s): 64.60.Fr, 05.70.Jk, 75.10.Hk, 75.40.Cx

I. INTRODUCTION lattice models. At low momentumk<1/¢, experiments
show thatG(x) is well approximated by a Gaussian behav-
Three-dimensionaD(N) models describe many impor- ior,
tant critical phenomena in nature. The statistical properties of

ferromagnetic materials are described by the cHse3, G(0) k2
where the Lagrangian field represents the magnetization. The %21+ M_é (©)

helium superfluid transition, whose order parameter is the
;ilozmzp Ie#hqeuir::g\lirgpl(litléde lc; fi:e_llliirg 2tosrtnesn,)g(()jrer:§rpi)g2gs tE/)vhereMG~1/§ is a mass scale defined at zero momentum
A . S 9 Sy " : (for a general discussion see, e.g., Réf).

liquid-vapor transitions in classical fluids or critical binary

fluids, where the order parameter is the dengtyiN) mod- . Ihn th'é r’)\lapfar we WI||HCOI’ITIder thfee;]d'mens'ona.' S);]stems
els in the limit N—O describe the statistical properties of with an O(N)-invariant ami tonian in t esymmetnc phase,
long polymers where theO(N) symmetry is unbroken. We will study the

The critical behavior of the two-point correlation function two-point correlation function of the order parameter, the

i ; . agrangian field, focusing mainly on its low-momentum be-
G.().() of the order parameterlls relevant in the descr|pt|_on Oflr_lavior. We will estimate the deviations from E§). We will
critical scattering observed in many experiments, typicall

= . . ; Yfocus on two quite different sources of deviations:
neutron scattering in ferromagnetic materials, light and x (i) Scaling corrections to Eq3), depending on the ratio

rays in liquid-gas systems, etc. In Born’s approximation the .7 > . . X :
cross sectionl'y; for incoming particles(i.e., neutrons or e:;o/m » and reflecting the non-Gaussian nature of the fixed

photons of momentump; and final outgoing momenturpy (i) Nonrotationally invariant scaling violations, reflecting

lfaﬁrsc;g:)rglgfngl&;) : the componewt=p;—p; of the Fourier a _microspopic anisotropy in the space distribution of_ the
' spins. This phenomenon may be relevant, for example, in the
_ study of ferromagnetic materials, where the atoms lie on the
It G(k=ps—pj). (1)  sites of a lattice giving rise to a spatial anisotropy which may
be observed in neutron-scattering experiments. In these sys-
As a consequence of the critical behavior of the two-pointems the anisotropy vanishes in the critical limit, &B¢x)
function G(x) at T, approaches a rotationally invariant form. It should be noticed
that this phenomenon is different from the breakdown of the
O(N) symmetry in the interaction, which has been widely
2 considered in the literatul@].
In our study of the critical behavior of the two-point func-
tion of the order paramete®(x) we will consider several
the cross section fok—0 (forward scatteringdiverges as approaches. We analyze the strong-coupling expansion of
T—T.. When strictly at criticality the relatiof2) holds at ~ G(x),
all momentum scales. In the vicinity of the critical point R .
where the relevant correlation lengghis large but finite, the G(x)=(s(x)-s(0)), (4)
behavior (2) occurs for A>k>1/£, where A is a generic
cutoff related to the microscopic structure of the statisticalfor the lattice N-vector [O(N) nonlinear 0] model with
system, for example, the inverse lattice spacing in the case aofearest-neighbor interactions

G~ 7

1063-651X/98/5{1)/184(27)/$15.00 57 184 © 1998 The American Physical Society



57 TWO-POINT CORRELATION FUNCTION OF THREE .. 185

. . essentially on the symmetries of the physical system or of
S.=—Ng > s Sy, (5)  the lattice formulation. The exponeptis related to the criti-
links {xy) cal effective dimension of the leading irrelevant operator
which we have calculated up to 15th order on the simplePreaking rotational invariance. Od-dimensional lattices
cubic lattice and 21st order on the diamond lattice. We alsdVith cubic symmetry the leading operator has canonical di-
perform a detailed study using theNLexpansion, whose mensiond+ 2. In the largeN limit, where the canonical di-
results, beside clarifying physical mechanisms, are also us&i€nsions determine the scaling properties, one fnel

ful as benchmarks for the strong-coupling analysis. MoreWith very small O(1/N) corrections. A strong-coupling

over we compute the first few nontrivial terms of theex- analysis s_,upported by a tvyo-lp(zpexpansion.and three-lqop
pansion and of the expansioni.e., expansion in the four- g expansion computation indicate tharemains close to its

oint renormalized coupling at fixed dimensidi 3) of the canonical value for alN=0, with deviations of approxi-
b ; ; ping g X mately 1% for small values dfl. It should be noted that the
two-point function for the corresponding™ continuum for-

lati FO(N dels: exponentp, which controls the recovery of rotational invari-
mulation of O(N) models: ance, is different fronw, the leading subleading exponent,
1 1 1 since they are related to different irrelevant operators. This
L ga= §§M¢(X)(9M¢(X)+ §“3¢2+ Zgo(qu)Z_ (6) ~means—and this may be of relevance for numerical
calculations—that the recovery of rotational invariance is un-

4 . related to the disappearance of the subleading corrections
We recall that theN-vector model and the™ model with the .o -+rolled bye: in practice, ap~2 while 0.8< w=1 [2,7]

same internal symmeti®(N) describe the same critical be- (,— 0 80 forN=0,1,2,3), rotational invariance is recovered

hawor: By unlversahty.our study prowdes'lnformatlon on the long before the scaling region.

behavior of the physical systems mentioned above in the \ye also investigated the recovery of rotational invariance

critical region of the high-temperature phase. A short reporfn two-dimensional models. On the square lattice, Nor 1

of our study can be found in Ref3]. (Ising mode) andN=3, we show thap=2. This leads us to
The first systematic study of the critical behavior®fx)  conjecture thap=2 holds exactly for all two-dimensional

is due to Fisher and Aharorjy,4,5. They computed5(x)  models on the square lattice. Similarly we conjecture that

in the e expansion up to term®(€?) [4] and in the largeN =4 (p=3) are the exact values of the exponents for the

expansion to order ¥ [5]; moreover some estimates of the triangular (honeycomb lattice. A Monte Carlo and exact-

non-Gaussian corrections fof=1 andN=3 were derived enumeration stud§8] for N=0 on the square lattice is con-

from strong-coupling series for various latticgg6]. Their  sistent with this conjecture. We should mention that our re-

calculations confirmed experimental observations that nonsults on the spatial anisotropy are also relevant in the

Gaussian corrections are small in the low-momentum regiordiscussion of the linear response of the system in presence of
In this paper we reconsider the problem of calculating theh externalanisotropig field. ]

two-point functionG(x) in the low-momentum regime using 1€ paper is organized as follows: In Sec. Il we fix the

the different approaches we mentioned above. We show th&tation and introduce a general parametrizationGgk)

the low-momentum expansion aroukd=0 of the scaling that includes the off-critical and nonspherical dependence. In

two-point function provides a very good approximation in aa%(iﬁellr:tlzvn? %C:lyzrzsteh:‘t Zg}fjgt?::sa\ggrse?(é% ‘3;:%\38 a0-
relatively large range of momenta, up|[td<3Mg. X P P

We compute the expansion of the scaling two-point func proaches: M expansioriup toO(1/N)], g expansiorfup to

. . , '0(g%)], € expansiorfup to O(€%)], and an analysis of the
tion and of its low-momentum expansion up to four loops, ; ; : . .
O(g*), in fixed dimensiord=3 and we extend the results of strong-coupling expansion db(x) on the cubic and dia

. 3 mond lattice. In Sec. IV the anisotropy Gf(x) is studied in
Ref. [4] by calculating the next three-loop ter®(e”). We e critical region. We present largéand O(1/N) calcula-

improve earlier strong-coupling calculations concerning thgjong on various lattices, and a strong-coupling analysis of
Ipvl\f-m]?mentum expan§|c1n @5(x). This is acr|1_|eved €SSeN- some nonspherical moments @{x) on cubic and diamond
tially for two reasons: longer strong-coupling series ar€,yices Again, the analysis of the first nontrivial terms of the

available, and, more importantly, we consider improved esg expansion and the expansion is presented. Anisotropy in

timators that allow more stable extrapolations to the criticaIG(X) is also studied in two-dimension@(N) models. In

limit. The results of the various approaches are reasonablxppendix A we present some details of dD¢L/N) calcula-
consistent among each other: thexpansion and the analy- tions. In Appendix B we present the 15th-order strong-
Sis O.f the st_rong-coupling serie; provide in gen.eral the m()S(Eoupling expansion of the two-point function on the cubic
precise estimates, _toggther with theN 1éxpan3|on_ forN . lattice for selected values &f. In Appendix C we report the
=16. Thee expansion is some_what worse but still consis-5q g4 orqer strong-coupling series of the magnetic susceptibil-
tent, perhaps because of the limited number of tefam® v 24 of the second moment G(x) on the diamond lattice

term less than in thg expansion for N=1.2.3
We also discuss the spatial anisotropyG(x) induced by T
the lattice structure. For the class of systems we consider, Il. THE TWO-POINT GREEN’S FUNCTION
G(x) becomes rotationally invariant at criticality: when _ ]
B— Be, so thatM g— 0, the anisotropic deviations vanish as A. Hypercubic lattices
Mg, wherep is a universal critical exponent. From a field-  In this section we discuss the general behavior of the two-

theoretical point of view, the spatial anisotropy is due topoint spin-spin correlation function in lattid®(N) models.
nonrotationally invarianO(N)-symmetric irrelevant opera- We consider a generic Hamiltonian defined on a hypercubic
tors in the effective Hamiltonian, whose presence dependkttice,
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where Perm, . -an("') indicates the sum of the nontrivial

H= _;y Jx=y)scsy, (@) permutations of its arguments. One then defines
where the sum runs over all Igttice sites. Bel_ow we will Q.k)=> TZL#MM:k4_%(k2)2, (12)
extend our analysis to other lattices. Let us define © +

K2(K)=2[T (k)= T(0)] ®) where the notatiok"=X ,kj, is used. Fot =3, p;=1 for all

’ d>2. From the rank-six tensars”“#?°(k) one finds

whereJ (k) denotes the Fourier transf(ﬂn 8€x). In spite ] 15Kk2k4 30(k?)3
of the notation, we are not assuming tha(k) is a sum of ~ Qs(K)= > Th## 4 (k) =Ko - 478 (di4)d<8)
the typeZ , f(k,). We consider models for which, by a suit- (13)

able normalization of the inverse temperaty#e
L Ind=2 itis easy to verify thaQg(k) =0 so thatp;=0. For
k?(k)=k*+0O(k*%), (9 1=4 andd>3 two differentQ{” (k) can be extracted from
S _ o the corresponding tensdig® " “®: Q{P(k) =3  Th#srrrrs
so that the critical _I|m|t is rotat_|ona.lly invariant. Moreover _ . QP (k)=3 ,, TEr##"" Whend=2,3 the two combi-
we make the following assumptiong) The interaction(x) . wr ) 1)
, - . . _ . nations are not independent. Inde(eé2 =2Qg"’ so thatp,
is short ranged so that< is continuous;(2) the function —1. Higher values of can be dealt with similarly.

J(x) (and thus alsd?) is invariant under all the symmetries  |n order to study the formal continuum limit of the Hamil-

of the lattice; (3) the interaction is ferromagnetic, so that tgnian defined in Eq(7), we expande, (k?) in powers ofk?.

k?=0 only for k=0 in the Brillouin zone. We write (the sum over different multipoles with the same
Besides the leadin@iniversal rotationally invariant criti-  value ofl being understood in the notatipn

cal behavior, we are interested in understanding the effects of

the lattice structure on the two-point function and the recov- e~ .
ery of rotational invariance. For this reason, our analysis k (k)—Zfo mZaO €21,m (K9)™Q2(k), (14
must take into account the irrelevant operators, which break
rotational invariance. It is natural to expakd(k) in multi-  wheree, =0 andey ;=1. Inserting back in Eq7) one sees
poles by writing that Eq.(14) represents an expansion in terms of the irrel-
evant operators
©
K(=2 2, e (k%) Q'(K). (10 Og1,m(X)=5(x) - 0™Qa()S(X), (15)

wherel1=3 ,4° . The leading operator that breaks rotational
i (P i inati . . KR S
Here the functionsQ3’(k) are multipole combinations, invariance is the four-derivative term

which are invariant under the symmetries of the lattice. Their

expressions can be obtained from the fully symmetric trace- O4(x)EO4,0(x):§(x)~Q4((9)§(x), (16)
less tensors of rankl 2T, “?(k) [9,10], by considering all _ _ _ .

the cubic-invariant combinations, which can be obtained byvhich has canonical dimensions+ 2. .

setting equal an even number of indices larger than or equal Let us now consider the Green’s function

to four and then summing over them. Odd-rank terms are - -

absent in the expansiqii0) because of the parity symmetry G(X;8)=(So" Sx) (17)
X— —X. Moreover, there is no rank-two term, i.&,(k) ) i ~ i

—0, due to the discrete rotational symmetry of the lattice@nd its Fourier transformG(k;3). We define a zero-
The summation ovep in Eq. (10) is due to the fact that, for Momentum mass scaMg(B) by

given |, there are in general many multipole combinations 1

th.at are cubic |nvar|a-n|i-11]. For notatlonal simplicity, we Mg(B)= ——, (18
will suppress the explicit dependence prin all the follow- £c(B)

ing formulas, but the reader should remember that it is un- . .
de?rstood in the notation whereég(B) is the second-moment correlation length

Let us give the explicit expressions @t (k) for the first , 1 3, x[2G(x:8)

few yalues ofl. We ;etQQ(k)E 1. Forl = 2 there is only one &(B)= 24 TXB) (19

invariant combination, i.e.p,=1, which can be derived XA
from Since there is a one-to-one correspondence betWkgB)
K2 and B, one may conside6(k;3) as a function ofM ()

Tgﬁvﬁ( k) = k*kPKk7k®— (d+—4) Perm, sy s 5*PK7K?) instead ofB. Indeed, for thefurpose of studying the critical

limit, it is natural to considefG(k;8) as a function ok and
(k?)2 Mg. In complete analogy to our discussion 3fk), we

- - af §yo =
T dr D dra) TeMeya(8O), (D jhayze the behavior oB(k,Mg) in terms of multipoles
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[again a sum over different multipole combinations with the T (k,Mg)
. 0, (K,Mg)
same value of is understood, see E¢LO)]: lim ————— =g (Y)Qy (k). (24)
. Mg—0 Z2(Mg)
~—1 —
G (k’MG)_lzzo 921(y:M)Qai(k), 20 Fori=2 the function defined by the previous equation coin-
cides with that defined in Eq21); moreover forMg—0,

wherey=k?/M% . Notice thatQy (k)= Qy (k/Mg)MZ . Z4(Mg)/Z4(Mg) is a finite (nonuniversal constant, mean-

_For the purpose of studying the universal properties of theng that both quantities have the same singular behavior for
critical limit of G(x), in whichMs— 0 keepingk/M fixed, ~ Mgz—0. For higher values df, formula (24) still holds, but
it is important to understand the behavior of the functions,qre is no easy relation betwegs (y) and g, (y Mg) as
921(y,Mg) whenMg—0. The naive I'mfflfes not exist.  gefined in Eq/(20), at least for generic Hamiltonians. Indeed,
However, as long as the contributions ® “(k,Mg) are 4t |east in principle, one may consider specific forms ()

origina}ted by the i_ns_ertion of indjvidue(lrrelevan} Opera-  anioving the property that all contributioms,(k,M ) with
tors without any mixing among different operators with the <1 vanish in the critical limit. for a given value o

same symmetry properties, one can apply standard results : . L ) -

renormz)illizationytrr)]eopry. In this case oﬁg )(/:an establish som lattice quantum field theory this is essentially the spirit of
niversal properties. For a generic choiceXgk) this holds ymanzik's improvement prografi4]. In this case formula

umv Properties. g : ! ! (21) is valid forl= | and the corresponding functiap,(y)

only for the functionsgy(y,Mg) andg,(y,Mg). Indeed for o . :
higher values of there are mixings among different opera- coincides with that defined by E@4).

tors that make the renormalization of the functions The functionsg,(y) defined in Eq.(24) have a regular
91(y,Mg) more complicated. Consider, for instance, the€Xpansion iry aroundy=0:

casel =3 in the largeN limit, where the operators have ca- .

nonical dimensions. In this case terms proportionaDsgk) Go1(Y) =1+ Cop 1y + Coy Y+ . (25)

are depressed a8 , while terms proportional tQ¢(k) are o

depressed aM4G_ However, it is easy to see that the multi- C01= 1 due to the definition of the second-moment correla-
pole decomposition 00 ,(k)2, which is also depressed as tion length. _

Mg, contains a term of the fork?Qg(k). This means that ~ The renormalization constadt, (Mg) is instead nonuni-
there are two operators contributingdg(k,Mg), O,x)?, ~ versal. ForMg—0 it behaves as

andOg o(x). An analogous argument applies to higher values _ _

of |. Notice that for the particular case b&3 the mixing Zy(Mg)=~zyM; ", (26)
should disappear in the limiy—0: thus for Mg—0

06(0,Mg) can be directly related to the renormalization where,, is a critical exponent that depends only on the spin
properties of the operatdg o(X). of the representatiofi.e., it does not depend on the addi-

For I=0 and|=2 standard results of renormalization tional indexp which has always been understood in the no-
theory show that, ifZ;(Mg)=92(0.Mg), the following  tation, see Eq(10)], and z,, is a nonuniversal constant that
limit exists: depends on the lattice and on the Hamiltonfand the ad-

ditional index p). An analogous expression is valid for
lim M: 9 (Y), (21) Z,(Mg) (and forZ,; for the special Hamiltonians we have
Mg—o0 Z21(Mg) discussed befojefor Mg—0 we haveZ,(Mg)~z,Mg"™.
. For |=0, as a consequence of our definitior&(Mg)
wheregy(y) is a smooth function, which is normalized s0 ~M2~7, where 7 is the standard anomalous dimension of
thatg, (0)=1. The functiong,(y) is universal in the sense the field. More generallyr, = 7— 7, is the anomalous di-
that it is independent of the specific Hamiltonian. mension of the irrelevant operatQr, o(X).

The functioné4(y) can also be obtained by considering  In two dimensions and fol=3 the renormalization con-
the linear response of the system to an external field possessfants diverge only logarithmically and thus we write for
ing the corresponding symmetry properties. One consider® 0
the one-particle irreducible two-point function with an inser-
tion of a O, o(Xx) operator at zero momentum, i.e.,

Z5(Mg)=2zy(In Mg)"2|1+0 . @7

In MG)

To, (X,M Ejdz Oa.0(2) S(0)-s(x)™ (22
0a o) (Oz10(2) s( x)) The anomalous dimensiong, are universal while the pref-
actor z,; depends on the details of the interaction.

and the corresponding Fourier transfol?B2|(k,MG). Set- We can now discuss the critical limit of E€R0). Using

ting the previous formulas we can write f g— 0
_ To, (kM) ~
=lim—a G (kMg) . 7 — pan
Za(Me)= lim—n 05— @3 iy =G FrisH MG " G(y)QukIM)

the following limit exists +-ee (28)
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where r.i.s. indicates rotationally invariant subleading correcmultipole combinations with given spin appear when consid-
tions and the dots stand for terms that vanish faster aering lattices with a lower symmetry. It is important to notice

Mg—0. From Eq.(28) one immediately convinces oneself that in order to have a rotationally invariant critical limit no
that the anisotropic effects &(x) vanish forMg—0 asMg multipole Q, (k) with | =2 should appear in the expansion of

wherep is a universal critical exponent given by the Hamiltonian. Thus our considerations apply directly only
to highly symmetric lattices with a tetrahedral or larger dis-
p=2+n—14. (29) crete rotational group. Indeed, if the term associated with

Q,(k) appears in the multipole expansion of the Hamil-

tonian, and therefore & ~*(k,Mg), the critical limit is not
rotationally invariant. However, it is always possible to
» ; . . . eliminate such terms with an anisotropic change of the length
Mg, as they are connected to differgnbtationally invari scales[12,13. Thus one can apply our analysis also to this

any wrelevant operators. Fmall_y notice that the leading termcase, provided one changes appropriately the physical mean-
breaking rotational invariance is universal apart from a mul-.

S ing of Q4(K).
. ) . . consider the two-dimensional triangular lattice. It is invariant
y—0, keepingM¢ fixed. In this case one can write for

; ) . i . Th [ [tipol
=0,2 (or in the special case we have discussed abové for under rotation ofr/3 e relevant multipoles are

We must notice that the exponeptis not related to the
exponentw, which characterizes the critical behavior of the
“rotationally invariant subleading” terms that vanish as

=0,1) "
- Tei(k)=(~K")* cog6l9)= 2, ( Zm) KGM(ik,) o2,
92(¥:Me)= 2 Uz m(M)Y™ (30) 35

_ _ _ _ _ where we have sét,=|k|cosé, ky=|k|sin ¢, and we have
By comparing this expansion with E¢25) and using Eq. assumed one of the generators of the lattice to be parallel to

(21), one recognizes that the x axis. Thus in this case we write
Zy(Mg)=uy o(Mg), (31 — “ )
K2(k) =2, Te(k)eq (k?), (36)
and =0
Us m(Mg) and a similar expression for the expansion of the two-point

(32 function. For the triangular lattice the first operator that
breaks rotational invariance has dimensib#t 4. This is a
consequence of the fact that the triangular lattice has a larger
symmetry group with respect to the square lattice. We define
]moments corresponding oy (k) by

Com= li .
™ Mg—0U21,0(Mg)

In the following sections we will use this formula to derive
estimates forc, . Indeed the functionsi; ,(Mg) can be
determined by computing dimensionless invariant ratios o
moments ofG(x; 8):

t6|,m</s)=§ (Xx®) ™6 (X)G(X; B). (37)
qm,m(ﬂ):g (x®)™Qy(X)G(x; B). (33

The arguments given in the previous subsection can be gen-
eralized to the triangular lattice in a straightforward way.
One derives an expansion of the for@8) with p=4+ 175

— 76 Tg(k/Mg) and QG(y) substituting Q4(k/Mg), and
ga(y).

It is interesting to notice that the expansi28) implies
some universality properties for some ratiosogf . It is
easy to verify that

_ Gon(B)Uam(B)
R4,m,n(ﬂ) B qOm(IB)Q4n(IB) (34)

is universal forT—T,; indeed the constardt,/z, drops out
in the ratio. Notice that this means not only th,, , does
not depend on the particular Hamiltonian, but also that it i
independent of the lattice structure as longlag(x) is the
leading operator breaking rotational invariance.

C. Non-Bravais lattices

Up to now we have considered regul(@ravaig lattices.
However, other important lattice structures are represented
Sby lattices with basis. Particular examples are the honey-
comb lattice in two dimensions and the diamond lattice in
three dimensions. These lattices are generically defined by

the set of points< such thatf=>2’+p;;p andx' =31, 7,
B. Other regular lattices where ;;p is the so-called basis vector joining the two points

All the considerations of the previous subsection can bé)f the ba5|_s, andy; are the generators of the underlying
regular lattice. Herep=0,1 andl; e Z. For the honeycomb

extended without changes to other lattices with cubic sym-=2""_ i ) :
metry, such as the bcc and the fec lattices. For other Bravaigitice 7 are the generators of a triangular lattice while for
lattices the same general formulas hold, but different multithe diamond latticep; are the generators of a fcc lattice. Due
pole combinations will appear in the expansion, according tdo the breaking of translational invariance one distinguishes
the symmetry of the lattice. In general a larger number ofbetween correlations between points with the same value of
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p (i.e., points belonging to the same regular laftieed down operators in the effective Hamiltonian that break the
points with differentp. In general the componen@,, of  parity symmetry. These operators must have an odd number
the two-point correlation function can be written in the form of derivatives, but, if they are bilinear in a real fiefd they

give after integration only boundary terms. The solution to
this apparent puzzle comes from the fact that the effective
Hamiltonian for models on lattices with basis is naturally
written down in terms of two fields, defined on the two regu-

dk k(- y) 1
Goo(X_Y):Gn(X—Y):fV—Be y Ak Mg) (39

and lar sublattices.
dk H(k. M As in the regular lattice case, we can associate to the
Goi(x—y)= Glo(Y—X)=j _eik<xfy>M, breaking of the parity symmetry a universal exponggt In
Vg A(k,Mg) principle it can be derived from the critical dimension of the

(39 lower-dimensional operator breaking this symmetry. From a
Practical point of view it is simpler to consider moments of
G(x). For the diamond lattice one definpg from the be-
havior, forMg—0, of the odd momentgz(8), i.e.,

where the integrals are performed over the Brillouin zone o
the corresponding underlying regular latticéz being its
volume.G;(x) and therefore\ (k,M ;) have the symmetries
of the underlying regular lattice and thus can be expanded as
in the first subsection. On the other haktik,M3) does not
have the symmetry of the regular lattice, but only the re- ool B)
duced symmetry of the full lattice. For the Gaussian model _ ) )
with nearest-neighbor interactions defined on the honeycombhe same formula applies to the honeycomb lattice with the
and diamond latticegand also on theid-dimensional gen- Obvious substitutionsgo,g—to 0, G3m—tam-

eralization, it is easy to realize that, wheW ;—0,

Gl 5) ~MEEmee, (45

Ill. CRITICAL BEHAVIOR OF G(x)

A(k,Mg)—d[1—[H(k,0)[?]+M§g, (40 AT LOW MOMENTUM
andA(k,Mg) turns out to be the inverse propagator for the A. Parametrization of the spherical limit of G(x)
Gaussian theory defined on the corresponding regular lattice. at low momentum

h Because of th? rgducgd symmetry, 'addritional muIFipoIes According to the discussion presented in the previous sec-
that are not parity invariant appear in the expansion Ofjq, iy the critical limit multipole contributions are de-
H(k,Mg). In the case of the honeycomb lattice the symme—pressed by powers dfl s, hence for3— j

L] c»

try of the triangular lattice is reduced ®— 6+ 27/3. As-

suming that one of the links leaving a site is parallel toxthe G(0:8)

axis, one can write =
G(k;B)

—do(Y), (46)

[

H(k'MG):IZEO Ta1(k)hs(y,Mg), (4D where, againyzkleé. As stated in Eq(25), (::jo(y) can be
expanded in powers of aroundy=0:
where we have extended the definiti@b) to include odd
multipoles:

[

Go(y)=1+y+ 2>, ¢y, (47)
3l/2 i=2

Tai(k)=(—K?)*"? cog3l0)= >, (zm)kimﬁkxﬁ'-zm.

m= wherec;=cy;. For generalized Gaussian theorgs-0. As

(42)  discussed in Sec. IIA the coefficients; of the low-
momentum expansion @f,(y) can be related to the critical
limit of appropriate dimensionless ratios of spherical mo-
mentsmy;=(qo; or of the corresponding weighted moments

The factori in this equation ensures that the functions
h3 (y,Mg) are real for alll.
For the diamond lattice one can write

N Y| — mzj 4
HkMo) =2 3 QP(0hP(y.Me), (43 M2i= T, ° (48)

whereQ(P (k) are multipoles constructed frofj* " “ as in Introducing the quantities

the case of the cubic lattices. The only difference is that now 1

odd-spin operators are allowed, belonging to the class vy = s _ E]_M(Zaj , (49)
. 21 Z5(d+20)
Q21+3(k) =ik kok3Qo (K), (44)
where we have assumed the natural orientation of the undefN€ May compute;=uo, /U [cf. Eq. (30)] from the fol-
lying fcc lattice. lowing combinations ob;,

For these lattices, it is not straightforward to make contact R R
with the field-theoretical approach. The problem is writing U,=1-wvy, uz=1-2v,+vg, (50
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etc. By definition, see Eq$32) and(47), in the critical limit ~ whenk—iM. The mass gap and the constar determine

Uj—C; . the large-distance behavior Gf(x); indeed for|x|—,
Another important quantity that characterizes the low-

momentum behavior ajy(y) is the critical limit of the ratio M\ (d-DR2 MIx|
2 el A ,
) 2 The critical limit S, of the ratioZg/Z is a universal quantity
Su= lim =7, (5D given by

B— B¢ G
where M is the mass gap of the theory, that is the mass _ c 0
determining the long-distance exponential behavio®X). S= lim —= WQO(yHy:yo' (55)
The value ofSy, is related to the negative zeyg of (jo(y),
which is closest to the origin by,= — Sy . The constan§y
is one in Gaussian modelse., wheng,(y)=1+y], as the
largeN limit of O(N) models.

Let us now consider the relation between the zero-

In a Gaussian theorgs=27.

B. /N expansion

momentum renormalization constant In the largeN limit the differencego(y) —(1+vy) is de-
pressed by a factor M/ It can be derived from the N/
Zeg=xM&=2,'M3, (52)  expansion of the self-energy in the continuum formulation.

One findg[5,15]
whereZ, has been introduced in E€R1), and the on-shell

renormalization constart, which is defined by R 1 1
Go(y)=1+y+ N¢1(Y)+O W)’ (56)
~ Z
Gk~ M2+k? (53 where, ford=3,
uy) Zde z [ 1 | y+z+2\yz+1 1 y(3-2) -
=—| dz n - .
W=7l arctaniiz)| 4\yz  \y+z—2\yz+1) z+1 3(z+1)°
|
A general discussion of th®(1/N) correction togy(y) in d We have also compute8y andS; to O(1/N). Writing
dimensions is presented in Appendix A. The coefficiants
of the low-momentum expansion g§(y) turn out to be very st
small. Writing Si=1+ Ol N2/ (60)
cV 1 one finds SP=¢,(—1)=-0.00459002, and
¢=x TOlnz) (58 M= g1(—~1)=0.009 328 94.

As expected from the relation&9) among the coeffi-
one obtainsc{!)= —0.004 448 60c$=0.000 134 410¢c{)  cientsc;, a comparison with Eq(58) shows that the non-
=—0.000 006 5805,0(51)= 0.000 000 4003, etc. We have Gaussian corrections ), andS; are essentially determined
computedci(l) up toi=25; a straightforward application of by the term proportional tok?)? in G~ %(k), through the
the ratio met_hod indicates that the convergence radius of th@pproximate relations
seriesEici(l)y' isy,=9. This is expected since the singular-
ity closest to the origin should be the three-particle yut. Sy=1+c,, (61)
Assuming that no three-particle bound states exist, then
=—9S,,=—9, in agreement with our findings.

For sufficiently largeN we then expect Sz=1-2¢,, (62

with corrections ofO(c3).
Ci<<Cy,<kl for i=3. (59

As we shall see from the analysis of the strong-coupling C. g expansion in three dimensions

expansion ofG(x), the pattern(59) is verified also at low Another approach to the study of the critical behavior in
values ofN. the symmetric phase dd(N) models is based on the so-
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called g expansion, the perturbative expansion at fixed di-

mensiond= 3 for the corresponding* continuum formula- I'9(0,0,0,0 ,5,5= +282§MG Oapys: (64)
tion [16]. The perturbative series that are obtained in this

way are asymptotic; nonetheless accurate results can be ob-

tained using a Borel transformation and a conformal map-
ping, whichgtake into account their large-order behavior. Apswhere F(p)=Mg+p?+0(p*), and 504’755_ Oapdys
general references on this method see, for instance, Rafs. T Say9psT Sasdpy- When Mg—0 the renormalized cou-
and[17]. This technique has led to very precise estimates oP!ing constant is driven toward an infrared stable zgtoof

the critical exponents. the B function (g)=Mgdg/IMg|g, A -

Starting from the continuum actiof6), one renormalizes  The universal functiorgo(y) is related to the renormal-

the theory at zero momentum using the following renormal-. . 1 —21(2) A Py
ization conditions for the irreducible two- and four-point cor- ized functlonf(g,y)—MG Tr7(k) by 9o(¥)=T(g".y). We
computed the first three nontrivial orders of the non-

relation functions of the fieldp: ) ) N )
Gaussian corrections fg(y). A calculation up to four loops
F(p)ap=26"TR'(P) Sap. (63  gave

—_ N+2 —3_35302 N+2 — 4o N+2 | (N+2)
f(g1Y)=1+y+g ZgZGm¢2(y)+g ZgZG (N+8)2<P3(Y)+g ZgZG(N+8)2 (N+8)2<P4,1(Y)

(N2+ 6N+ 20) (5N+22)
+ T NT8)Z PaAY)+ NT¥8)Z ®44Y)

+0(9°), (65

whereg_is the rescaled couplinf?] g_=(N+8)g/487r, Z, is the renormalization constant of the couplif@gfined byg,
=M ngg)

2 —1 — 1 2(41N-|-190)—2 053 66
g=1+g+ —WQJF(Q), (66)

andZg is the zero-momentum renormalization of the field

Zo=1- —2N¥2) 200 6

c=1 27 N+8)29 +0(g°). (67)
A simple derivation of the two- and three-loop functiopg(y) and ¢5(y) is presented in Appendix £cf. Egs.(A14)]. In
particular using the results of Refd.8,19 one finds

cpz(y)=4ln(1+$y)+2M—8—iy. (68)
\/y 27

We shall not report the expressions of the four-loop functippgy) because they are not very illuminating.
The coefficients of the low-momentum expansion can be easily obtained frof6@&dpy calculating the zero-momentum
derivatives of the functiong, ;(y). We write

N+2 . N+2 —  N+2 8(7N+32) (N+2)
: (252 (2) 4 K3 g3 @[ 1_ (3) 4 (4D
Ci (N+8)2h| g +(N+8)2(2h| +h| )g +(N_|_8)2 i [ 3(N+8)2 +3h| +h| (N+8)2
(N?+ 6N+ 20) (5N+22) ) —
(42 " 7729 @3 Y 5
i (N+8)2 i (N+8)2 g +O(g )a (69)
|
where we have introduced the coefficients of the functionse,(y) and ¢3(y) and of their derivatives at
y=—1: ¢,(—1)=-0.00521783, ,(—1)+¢e3(—1)=
1 d —0.000282 71, ¢5(—1)=0.0107349, and @&5(—1)
hf”"):ﬁ ay @nj(¥)ly=o0- (70 + @j4(—1)=0.000 4490.

A comparison of theg expansions ofc;, Sy, and S,
] H ) shows that the approximate relatiof@l) and (62) are valid
In Table | we report the numerical valuesigff*) for i<5. o all values ofN and not only forN—c as shown in the

The calculation ofS,, andS; to O(?) requires the values previous subsection.
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TABLE I. Numerical values of the coefficients™)) defined in Eq(70).

i h( h® h(*2 h{“2 h(+3

2 — % 0.00949125 0.000765804 —0.0134856 —0.0345992

3 = —0.000612784 —0.00000341189 0.00102554 0.00253490
4 - =m 0.0000450060  —0.00000233206 ~ —0.0000841861  —0.00020327

5 Taiv6s —0.0000035762 0.00000035769 0.0000072651 0.00002390

In order to get quantitative estimates, one must perform #yticity of the 8 function at the critical poinf24]. This dif-
resummation of the series and then evaluate it at the fixederence is, however, too small to be quantitatively relevant in

point value of the coupling*. Although the terms of thg ~ Our calculations.

expansion we have calculated are on|y threecﬁoand two It is difficult to estimate the Uncertainty of the results.
for Sy, and S,, we have tried to extract quantitative esti- Resummations oR(g) are not very stable and indeed the
mates that take into account also the following facts: estimates show an upward trend with the order of the series:

(i) The g expansion is Borel summabl@0] (see also, roughly we expect an erroe20% onc; and Sy, for small
e.g., Refs[2] and[17] for a discussion of this issiieand the  values ofN. As N increases the estimates become more pre-
singularity closest to the origin of the Borel transfotoor-  ¢jse. Resummations &¥(g)/g? appear instead much more
responding to the rescaled coupli@ is known[21]: bs= stable: results with two terms essentially agree with the final

—0.751 897 74 (N+8).

estimates using three terms. In this case the error should be

(i) The fixed point valueg* of g has been accurately =5% onc; andSy for small values ofN and again it de-
determined by analyzing a much longer expansjom creases adl increases. The final results are in good agree-
0(g")] of the correspondingd function [22—25. Indepen- ~ment with the estimates by other methods.

dent and consistent estimatesa’f have been obtained by

other approaches, such as strong-coupling expansion of lat-
tice N-vector model[26,27] (for N=1 see also Ref§28-

D. € expansion

31]), and Monte Carlo lattice simulation®nly data forN The universal functiomy(y) can be computed perturba-

=1 are availabl¢32—35).

tively in e=4—d using the continuump* theory[38]. The

We have followed the procedure described in R86]  |eading order is simplygo(y)=1+y. The first correction
(see also Ref2]), where the perturbative expansion in pow- gppears at orde¢? and was computed by Fisher and Aha-
ers of g is summed using a Borel transformation and a con+ony [4]. We have extended the series, calculating@fe®)
formal mapping, which takes into account its large-order beterm, obtaining
havior. Since they series ofc;, Sy, — 1, andS;—1 have the

form R(g)=9%S,_0a;g', one may apply the resummation Jo(Y)=1+y+ e N ,
method either toR(g) or to R(g)/g?. In Table Ill we (N+8)

+2 [ 6(3N+14)
[1—’_6 (N+8)2 ‘//2()/)

present results for both choices. In our calculations we used s N+ .
the estimates ofg* obtained from the analysis of thg te (N+8)2 P3(y)+0(€%), (79)
function by[22,23,25. They are reported in Table Il. For

small values ofN slightly lower values of? were com-
puted in Ref[37], taking into account the possible nonana-where

TABLE II. For several values ol and for the cubic and diamond lattice, we report the valueg8.ofie

used in our strong-coupling calculations. We also report the fixed-point @‘umf the rescaled zero-
momentum four-point renormalized coupling, as obtained by field-theoretical methods.

N Cubic Diamond g*
0 B.=0.2134971) [50] B.=0.347371) [45] 1.4218) [2]
1 B.=0.22165443) [51] B.=0.369711) 1.4165) [2]
2 B:=0.227101) [52] B.=0.38452) 1.4064) [2]
3 B.=0.23101212) [53] B:.=0.39512) 1.3914) [2]
4 B.=0.233982) [43] B.=0.40272) 1.369[25]
8 B.=0.240843) [43] B.=0.42002) 1.303[25]
16 B.=0.245876) B.=0.43272) 1.207 [25]
32 B.=0.24911) B.=0.44011) 1.122[25]
o B.=0.25273 ... [54] B.=0.4482D . .. 1
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TABLE lll. Estimates ofc,, c3, Sy, andd; as obtained by the analysis of the strong-coupling expansida(gj on the cubic and
diamond lattice, from resummations of the availafplexpansion and expansiorin this case we give two numbers corresponding to the

two choices: resumming(x) or R(x)/x?], and from theO(1/N) calculation of 1IN expansion.

N 10%c, 10%c, 10%(Sy—1) 10,
0 Cubic -1(1) 0.121) 0(2) 1(2)
Diamond -1(1) 0.101) 0(1) —-1.05)
g expansion —3.29,—3.63 0.108, 0.102 —2.95,—-3.50 —1.31,-1.60
€ expansion —2.48,—4.26 0.065, 0.114 —2.55,—-4.38 -1.10
1 Cubic -3.02) 0.101) —-2.51.0 —-1.7(5)
Diamond -3.02) 0.102) —2.34) —-3(1)
g expansion —3.92,—-4.27 0.126, 0.120 —3.50,—-4.12 —1.59,-1.89
€ expansion —3.06,—4.99 0.080, 0.134 —3.14,-5.13 -1.31
Impr e expansion —2.80,—3.64 0.060, 0.089 —2.86,—3.73
2 Cubic -3.92) 0.11(1) —-3.51.0 -2.32)
Diamond —4.1(4) 0.102) -3.53) -3(1)
g expansion —4.22,—4.54 0.133, 0.128 —3.85,—-4.40 —-1.72,-2.01
€ expansion —3.39,-5.29 0.089, 0.142 —3.48,—-5.44 —-1.41
3 Cubic —-4.1(1) 0.11(2) —4.1(4) —-2.52)
Diamond —-4.53) 0.11(3) —4.04) —2.63)
g expansion —4.29,—4.58 0.134, 0.128 —3.96,—4.45 -1.77,—-2.03
€ expansion —3.56,—4.55 0.094, 0.144 —3.66,—5.50 —1.46
4 Cubic —4.1(2) 0.121) —4(1) —-2.52)
Diamond —-4.7(2) 0.102) —4.24) —2.55)
g expansion —4.21,-4.46 0.130, 0.125 —-3.92,-4.34 —-1.76,—1.99
€ expansion —3.64,—-5.28 0.096, 0.143 —3.74,—-5.43 —-1.47
1/N expansion —-11.12 0.336 —11.48 —-5.12
8 Cubic -3.51) 0.092) -3.805) —-2.1(2)
Diamond —-4.00) 0.055) —-3.84) —-3(2
g expansion —3.60,—3.72 0.108, 0.103 —3.44,—3.68 —1.55,-1.68
€ expansion —3.48,—4.55 0.093, 0.124 —3.58,—4.68 -1.38
1/N expansion —5.56 0.118 —5.74 —2.56
16 Cubic —2.41) 0.061) —-2.82) —1.42)
Diamond —2.655) 0.053) —-2.73) -1.2(8)
g expansion —2.46,—2.49 0.072, 0.069 —2.43,—-2.52 -1.10,—-1.15
€ expansion —2.73,—-3.19 0.074, 0.088 —2.81,—3.28 —1.10
1/N expansion —2.78 0.084 —2.87 —1.28
32 Cubic —1.455) 0.041) -1.803) -0.7(2)
Diamond —1.505) 0.041) —-1.7(3) —-0.53)
g expansion —1.427,—-1.429 0.041, 0.040 —1.45,-1.48 —0.66,—0.67
€ expansion —-1.73,—-1.84 0.047, 0.052 -1.78,—1.90 -0.75
1/N expansion -1.39 0.042 —-1.43 —-0.64
0 0 0 0 0

wz(y>=2f:¢z<1+%z> In(\1+ fz+ 2\2)h(y,2),

y

(72

The coefficients; to O(€®) can be derived from Eq71)
and the expansions af,(y) and ;(y) aroundy=0:

Yo(y)=—7.52024< 10 3 y?+1.9193x 10 * y3
—8.14201x 10 © y*+4.39145¢10 7 y°>+ O(y"),

1
h(y,Z)=—m+m+Wz(l+y+Z (73)

—1+2y+2z+y?—2yz+7°).

P3(y)=1.87481x 1073 y2—2.50674< 10 ° y*

+2.48598 108 y*+5.15004x 10~ 8 y°+ O(y®).
(74)

We do not report the explicit expression ¢f(y) because it
is not very illuminating. It can, however, be obtained from
Egs. (A10), (All), and (A13) of Appendix A, where we
show how to derive the functions,(y) and;(y) from the

R The calculation 06, andS, to O(€°) requires the values of
O(1/N) calculation ofgg(y) in d dimensions.

Yo(y) and 3(y) and of their derivatives aty=—1:
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one can modify thee series to obtain a new expansion,
which gives the exact value foe=2. In the case of the
two-dimensional Ising model, i.eN=1, the coefficientg;
10° AT and Sy, have been calculated exacfl§9]. So forN=1 we

" can improve the resummation of tlkeexpansion by impos-
ing the exact result foe=2 [41]. One writes

101 T T ‘ T T ‘ T

107!

R(e)=R(e=2)+(2—¢€)R(e), (75)

1077 _
and resums the expansion oR(e€). In other words we use
as a zeroth-order approximation the linear interpolation; of
betweend=2 andd=4, and then we use the series to
determine the deviations from the interpolation. As before,
one can also apply the same procedurB(e)/e>. We report
N | | | the results obtained with both choices in Table Ill. They are
10 e — referred to as the “improved’e expansion. The estimates
are in good agreement with the other results. Notice also that
y the large discrepancy between the two different resumma-
FIG. 1. Plot of the functionss,(y) and y(y) (full lines) and of tions of the unconstrained expansion is here significantly

their low-momentum expansions up @&(y®) (dashed lines reduced.

1072

o]
—
(@]
avl
(w]
W
o
N
o

Yo(—1)=—7.72078<10 2 and y5(—1)=1.56512< 10" 2,
P3(—1)=1.89984< 102 and y4(—1)=—3.8246<10 3.
In Fig. 1 we plot the functionsy,(y) and y5(y) together In this subsection we evaluate some of the quantities in-
with their expansion$73) and (74). Notice the good agree- troduced in Sec. Ill A by analyzing the strong-coupling ex-
ment between the function(y) and their expansions up to pansion of the two-point functionG(x) in the lattice
y=9, which is the theoretical convergence radius of the lowN-vector model with nearest-neighbor interactions.
momentum series. By employing a characterlike approaet?], we have cal-

In order to get quantitative estimates from the perturbativeculated the strong-coupling expansion ®{x) up to 15th
€ expansion, one should first resum the series and then eval@rder on the cubic lattice and 21st order on the diamond
ate the resulting expression at 1. Usually resummations lattice for the corresponding nearest-neighbor formulations.

E. Strong-coupling analysis

are performed assuming the Borel summability of ¢hee-  In Appendix B we present the 15th-order strong-coupling
ries. A considerable improvement is obtained if one uses théxpansion of5(x) on the cubic lattice for some values if
knowledge of the singularity of the Borel transforf@1],  In Appendix C we report the 21st-order strong-coupling se-

bs=—(N+8)/3. As in the analysis of thg expansion, we ries of the magnetic susceptibility and of the second moment
have used the resummation procedure described if@&f.  of G(x) on the diamond lattice foN=1,2,3.
Since thee series ofc;, Sy—1 andS,— 1, have the form We mention that longer strong-coupling series, up to 21st
R(€)=€’S,_oa;i€e, we applied the resummation method to order, of the lowest moments @(x) on the cubic and bcc
R(e€) and toR(€)/€2. In Table 11l we present results for both lattices have been recently calculated by a linked-cluster ex-
choices. Since we use a series with only two terms the estPansion technique, and an updated analysis of the critical
mates are not very precise as the large difference between tg&ponentsy and v has been present¢d3]. For N=0 even
results obtained with the two methods indicates. longer series have been calculated for various lattidds-
One can also try to get estimates for two-dimensionat6]-
O(N) models, i.e., fore=2. By resumming the series of In our strong-coupling analysis, we took special care in
c,(€) andSy(€), we findc,= —0.0010 andS,,=0.9989 for  devising improved estimators for the physical quantites
N=1, which must be compared with the exact res{®g] and S, because better estimators can greatly improve the
c,=—0.000 793 andSy,=0.999 196:c,= —0.0013 andS,, stability of the extrapolation to the critical point. Our search
=0.9987 forN=3, to be compared with the strong-coupling for optimal estimators was guided by the lafgetimit of
results[40] c,=—0.0012(2) andSy,=0.99872). In both  lattice O(N) o models.
cases the agreement is satisfactory. Instead, when resumming!n the largeN limit of the N-vector model on the cubic
the series divided b¥2 the agreement is poorer. We find lattice the fOIIOWing exact relations hold in the hlgh'
c,=—0.0026 andSy=0.9973 forN=1 andc,=—0.0028 temperature phase, i.e., fr<f;,
and Sy =0.9971 forN=3. A posteriorj it thus appears that 1
the estimates obtained from the resummation of the complete U5 (Mg)=U,=— —~M2,
seriesR(€) are more reliable. This is confirmed by the three- 20 (76)
dimensional analysis where the estimates obtained by con-
sideringR(¢€) are those that are in better agreement with the
strong-coupling an@-expansion estimates. 05 (Mg)=0 =iM4
For quantities that are exactly known in two dimensions, e 87840 ¢
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etc.u” vanishes fofT—Tg, i.e., forM3—0, leading to the (as in the case of diamond lattice models fér-0), we

expected result;=0. Similarly on the diamond lattice one €stimated it by performing an IA analysis of the strong-
obtains coupling series of the magnetic susceptibility. In our analysis

errors due to the uncertainty on the value@gfturned out to
~ - 1, be negligible. The values @, used in our calculations are
Uz(Mg)=uz=—55Mg, reported in Table II.
In Table 11l we report our results. The reported estimates
of ¢,, c3, andSy, summarize the results from all the analyses
4 ' (77 we performed, and the reported errors are a rough estimate of
1+ ﬁmé the uncertainty. The final results are rather accurate taking
into account the smallness of the effect we are looking at.
etc. Universality among the cubic and diamond lattices is in all
We introduce the quantities cases well verified and gives further support to our final es-
timates. Our results are in good agreement with the estimates
u=U;—0"(Mg), (78)  obtained from the other techniques. OnlyNat=0 are there
small discrepancies.
whose limits forT— T, are stillc;. At N=c u; are optimal Our strong-coupling analysis represents a substantial im-
= provement with respect to earlier results reported in F&f.

estimators ot;, indeedu_i(,B) =uf=¢;=0 for B<g,, i.e., ) ; ;
off-critical corrections are absent. It turns out that the use 0¥0r the Ismg_ modell, and obtained _by an anal¥3|s of the
strong-coupling series calculated in Reffl,55]: c,=

u;, besides improving _the es_timates for large valueNpf —5.5(15)X 10 4, c3=0.05(2)x 10" * on the cubic lattice,
leads also to more precise estimates;cdt low values oN. 54 c,=—7.1(1.5X10"* and c;=0.09(3)x10 % on the
Strong-coupling series af; can be easily obtained from the pcc lattice. Other strong-coupling results can be found in
strong-coupling expansion @(x). We note that for all val-  Ref.[48]. Our analysis achieves a considerable improvement
ues ofN and on the cubic lattice, while the seriesipf(uz)  With respect to such earlier works essentially for two rea-
starts fromg~1 (872), the series oli, (uj) starts fromg* ~ SONs: we use longer series and improved estimators, see Eq.
(8%). A similar fact occurs also on the diamond lattice. (78), which allow a more stable extrapolation to the critical
On the lattice, in the absence of a strict rotational invari-imit. Estimates from the analysis of the strong-coupling se-
ance, one may actually define different estimators of theies of the standard variablag, defined in Eq.(50), are
mass gap having the same critical limit. On the cubic latticemuch less precise, although consistent with those obtained
one may consider obtained by the long-distance behavior from U_.
of the side wall-wall correlation constructed wi(x), or

equivalently the solution of the equati@ *(i ,0,0)=0. In
view of a strong-coupling analysis, it is convenient to use

. . 1 1+3M2
US(MG)EU3:756OM4

F. Conclusions

another estimator of the mass-gap derived frarf48,6]: We have studied the low-momentum behavior of the two-
point function in the critical limit by considering several ap-
M3=2(coshu—1), (79  proaches: M expansion,g expansion,e expansion and

strong-coupling expansion. A summary of our results can be
which has an ordinary strong-coupling expansignt{fas a  found in Table IIl.
singular strong-coupling expansion, starting within g). From the analysis of our strong-coupling series we have
One can easily check thdd./u—1 in the critical limit. A obtained quite accurate estimates of the coefficiepts; of
similar quantityM 3 can be defined on the diamond lattice, asthe low-momentum expansid@7). Asymptotic largeN for-

shown in Appendix Jcf. Eg. (C2)]. mulas (58) and (60) are clearly approached by our strong-
In order to determine the coefficients and c; of the  coupling results, but only at rather large valuesNof The
low-momentum expansion @f,(y) and the mass rati6y, , same behavior was already observed for other quantities such

: " T itical exponentp2] and the zero-momentum renormal-
we analyzed the strong-coupling serieswf and u; [de- as critical ex )
fined in Eq. (78)], and those of the ratiosMﬁ/Mé and ized four-point coupling26]. We have also computed the

M2/MZ respectively on the cubic and diamond lattjgg]. ~ universal functioa{;o(y) in the g expansion in fixed din;en-
In the analysis of a series of the forfn=8"S,_,"a; 8,  Sion to orderO(g™) and in thee expansion to orde®(e”).

we constructed approximants to théh-order seriesg ™A '€ corresponding estimates ©f, c3, and Sy are in rea-
=2in:oai,3i, and then derived the original quantity from sonable agreement with the syrgng—couplmg results.

them. We considered various types of approximants such gs For all values oiN the coefﬁme_nta:z ?‘F‘d% turn out to
Pade(PA’s), Dlog-Pade(DPA’s), and first-order inhomoge- € VY small and the patte(®9) is verified. Furthermore
neous integral approximants\’s ) [49]. In all cases we con- the relation(61) is satisfied W|th|n_ the precision of our analy—
sidered only quasidiagonal approximants. We then evaluated™ A erV terms of the expansion of the two-point scall!ng
them at the critical poinB, in order to obtain an estimate of functiongo(y) in powers ofy appear to be a good approxi-
the corresponding fixed-point value. For the cubic lattice andnation in a relatively large region arourys=0, larger than
most values OfN, BC is available in the literature from |y|51 This is consistent with the fact that the Fourier trans-
strong-coupling and numerical Monte Carlo studiese, for ~ form of the two-point function has a simple pole let=
example, Refs[26,43,45,50—-5B. When 3, was not known —M?2, thus leading to an analytic zero gy(y) at yo=
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—Su. The pattern of the coefficients; suggests that the convergence radius of the expansion aroyad should be

singularity of go(y) closest to the origin is much further, Sm -
which is not unexpected. Indeed we expect that the first sin-

gularity oféo(y) is the three-particle cut. In two dimensions,
from the exact matrix [56] one knows that no bound states
exist, so thaty.,=—9Sy . This is also confirmed by the In this section we will study anisotropic effects on the
exactly known two-point function of thd=2 Ising model two-point function due to the lattice structure. We will
[12]. The 1N expansion of the coefficients suggests that mainly consider three-dimensional lattices with cubic sym-
Yeu=—9 even in three dimensions. metry. However, whenever possible, we will give expres-

The few existing Monte Carlo results for the low- sions for generald-dimensional lattices with hypercubic
momentum behavior of the two-point Green’s function areSymmetry, so that one can recover the results for the square
consistent with our determinations but are by far less preciséattice and compare with perturbative serieslin4—e. We
Using Refs[57-59 one estimates,= —13(17)x 10~ * for wlll also comment briefly anq present some results for the
self-avoiding walks, which correspond f=0. In Ref.[60]  triangular, honeycomb, and diamond lattices.
the authors give a bound oSy, for the Ising model K
=1), from which—1.2x 1073<Sy,—1<0, which must be A. Notations
compared with our estimateSy—1=—2.5(5)x10"*. In the following subsections we will compute the expo-
Monte Carlo simulations of th¥Y model N=2) show that nent p=2+ — 5, defined in Eq.(29). It can be derived
Sy=1 within 0.1% [52], which is consistent with our directly from Eq. (26) or Eq. (28) or by studying the
strong-coupling resuty —1=—3.5(5)x 10" *. weighted moments ;= q4; /M, whereq,, is defined in Eq.

We can conclude that in the critical region of the symmet~(33) andmy= y. Indeed forM 0, '
ric phase the two-point Green’s function for &llfrom zero
to infinity is almost Gaussian in a large region aroukfd — .

. R . —4-2j+p

=0, i.e.,|k¥M3|=<1. The small corrections to Gaussian be- d4j~Mg : (80)
havior are dominated by the&?)? term in the expansion of A
the inverse propagator. Via the relatioll) such low- We will also compute the universal functiay(y). In par-
momentum behavior could be probed by scattering experiticular we will be interested in the first terms of its expansion
ments by observing the low-angle variation of intensity. Ain powers ofy aroundy=0:
similar low-momentum behavior of the two-point correlation
function has been found in two-dimensior@(N) models
[39,40,61. Substantial differences from Gaussian behavior @4(y)=1+i21 diy, (81)

appear at sufficiently large momenta, wh&#k) behaves as

1/k?~ " with »+#0 (although is rather small:p=0.03 for
0=N=3). g ( gn7 7 whered;=cy; [cf. Eq. (25)]. The coefficients]; can be eas-

The behavior of the two-point function presents a dra-lY obtained from the expressions of the momensg,. For

matic change in the broken phase. For2 the transverse Mc—0, we find

and longitudinal magnetic susceptibilities, i.e., the transverse

and longitudinal two-point functions at zero momentum, are —

diverging due to the presence of massless Goldstone bosons. q_—4‘1a4(d+8)(1— tdyMg2,

Thus the simple low-momentum expansion found in the 40

symmetric phase does not hold anymore. Only for the Ising

model, i.e., forN=1, is there a mass gd@ in the broken o

phase. In this case the low-momentum expansion of the scal- 42 ) ) N 4

ing two-point function can still be written in the same form =" —24d+8)(d+10)(1~3d;—3C2+3d)Mg™,

as in the symmetric phase. However, now the deviation from 40 (82)
a Gaussian behavior is much larger. The coefficients

should be larger by about two orders of magnitUé8].  and so on. From Eq82) it is easy to derive expressions for
Moreover, by analyzing the low-temperature series published —,, . /u, , whose critical limit isd; . In particular

in Ref.[64] one getsS,,=0.941), which compared with the o

value ofSy=0.9997 obtained in the symmetric phase shows L

a much larger difference from the Gaussian vafijg=1. M& Qa1

The change is even more relevant in te 2 Ising model. ri=2- 20d+8) g (83
Indeed in its broken phase one fin®,=0.3996, c,= a0
—0.4299,c,=0.5256, etc., which should be compared with

the corresponding values in the symmetric phEg€ Sy, B. Breaking of rotational invariance in the large-N limit

=0.999 196, ¢,= —7.936<10 !, 5=1.095¢10 ®, Ca= In the largeN limit lattice O(N) models become massive
—3.127<10", etc. Moreover the singularity 4= —M Gaussian theories that can be solved exactly. If one considers
of G(k) is not a simple pole, but a cut. As a consequence theéneories defined on Bravais lattices one has in the large-
corresponding zero igy(y) is not analytic, and therefore the limit

IV. ANISOTROPY OF G(x) AT LOW MOMENTUM
AND IN THE CRITICAL REGIME
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TABLE IV. Three-dimensionaN-vector model with nearest-neighbor interactions: lowest momen®(xf at N=<« on the cubic, fcc,
and diamond latticez is the inverse of the second moment correlation length.

Moments Cubic fcc Diamond
X 1 1 3
Bz 2p2 2pz
m, 6 6 6
z z z
M2 z z z
ds0 0 0 1 (1+ z)l
6\3 12
my 120 L z 120 z 120 1 z
2T 21T 2T
a0 12 3 8
5z 5z 5z
Q3. 0 0 z 2z z\72
V3| 1+ s 218\ 1
Mg 5040 Lz 2 5040 Lz 2 5040 . 11z+ 8z2+ z
A 10" 840 A 10" 840 2 60 945 1008
Taa 528( 2 132 2 352(1+ z 2 oz
52| 44 52| 44 522|733 5287 12
e 12 39 416 z z\?!
Us,0 e 99 __(1__) 1+ =
77z 154 231z 78 12
Mg 36288 3z 1122 2 36288 3z 372 28 36288 3z 38972 o
7 T 20" 2160 6048 7 T 20" 7560 6048 o * 20" 136080 °)
Qa2 41184 L 192 22 10296 L 9z 72 27456 142 13972 o
52 |\ 1T 286" 343 T 57 (1T 143 343 "5 |\ 1" 858" 30888 O%)
T 240 L z 1110 L 13z 23680 L 12% 5272 o )
1122 + 140 - 7722 * 740 a 23172 a 1480+ er ()
G Yk =cB (k2+M32) (84) _ mt
¢ mem—2"mt| T] (d+2i)| mg2™, (86)
J— 1=
where k? is defined by Eq(8). The relation betweelMé
and g is given by the gap equation. The constans lattice — me1
depelndel; and will not pla'y any ro!e in the d|scuss.|on'. The Q_Amﬁzm(m_*_l)! H (d+8+2i) Mgzm, (87)
function k< has the properties mentioned at the beginning of Qa0 =0
Sec. Il A and a multipole expansion of the ty&0) for
lattices with cubic symmetry. For other Bravais lattices theand
only difference is the presence of different multipole combi-
nations. Considering first lattices withypen cubic symme- _ 24d(d-1)
try, from Eqgs.(10) and(14), we find forMg—0 q4,0—>—e4,0W c - (88

5*1(k)=c,8Mé{1+y+ Mé[ez &2+ e Qa(kIMg)]+---}. Notice that the only d%endence on the specific Hamiltonian
’ ' (85) is in the expression ofj,o. (Exact expressions for some of
these quantities are reported for the theory with nearest-
Comparing with Egs(20) and (28) we get immediatelyp neighbor interactions on the cubic, diamond, and fcc lattice
=2 andg,(y)=1, i.e.,d;=0 for all i #0. @n T_able IV and on the square lattice in Table) ‘w.nive_rsal—

In the largeN limit one can easily verify the universality 1ty iS then a straightforward consequence of the indepen-
properties of the ratios defined in B4). Indeed for generic  dence of the ratig87) from e, . It should also be noticed
Hamiltonians in the critical limitM ;—0 (keeping the di- thatq4lm/m4+2m~Mé. This shows that, as expected, aniso-
mension of the latticel generig we have tropic moments are suppressed by two powersVigf in
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TABLE V. Two-dimensionalN-vector model with nearest-neighbor interactions: lowest moments of
G(x) at N=o on the square, triangular, and honeycomb Iatu’eeMé.

Moments Square Triangular Honeycomb

>

'_\
KS
| =

Bz 3Bz 3Bz
m, 4 4 4
z z z
M2 z z z
-1
; : 1,2
my 64 z 64 z 64 z
EARART: EARART: §(1 1—6)
a,o 1 0 0
z
mg 2304 z 7 2304 z 7 2304 z 2 7 z\ 7t
I e I N
qa1 40 z 0 0
2
t 0 4 36 z z\ !
E Tlaal(rg]

agreement with the prediction=2. We stress that the uni- where g3 =3xyz X,y,z). Thus parity-breaking effects
versality of Ry,  is due the fact that there is only one lead- vanish asMé, i.e., pp=23, faster than the anisotropic effects
ing irrelevant operator breaking rotational invariance. we have considered previously.

It is interesting to notice that such a universality does not  Finally let us consider lattices that do not have cubic in-
hold for momentsq g, (or for g, n for higher values of) ~ variance, such as the triangular and the honeycomb one. In
because of the mixings we have mentioned in Sec. Il A. Foifable V we report the larghk limit of some of the lowest
am we have forT—T, spherlcal and npnsphe_ncal mc_)mentsGifx) for the models

: with nearest-neighbor interactions.

For the triangular lattice one should consider the multi-

2
ﬁﬁzm(nw D 1+ %) 8m pole expansior(36). In this case the leading term breaking
Js6,0 €60d+12 rotational invariance is proportional t©g(k) and thus we
me1 have p=4. This is indeed confirmed by the fact that, for
x| IT (d+12+2i)| mg?™, 89 Mc—0, tem/Mesom~Mg, Where tgm=tem/mo andten
i=0 is defined in Eq(37). As in the cubic case, it is immediate to

verify the universality of ratios of the form given in E(g4)
which depends omgo and e, a consequence of the fact with tg,, instead ofq,,, which is a consequence of the
thatQ,(k)? contains a term of the fork?Qg(k). Thus ratios unigueness of the leading operator breaking rotational invari-

of the form (34) built with Em are not universal. ance. Universality follows from the fact that, féor—T,,
Let us now consider the diamond lattice. In this case not — om

only is rotational invariance broken, but also parity symme- tem 277(M+1)I(m+5)! M2 1)

try. As the leading anisotropic operator@s, (x) the behav- t_(fmH 5! G

ior of the leading anisotropic corrections is identical to that

we have discussed above. Therefpre2 also in this case. independently of the specific Hamiltonian.

Moreover the invariant ratioR,,, , are identical for the dia- For the honeycomb lattice one must also consider

mond lattice and for the other Bravais lattices with cubicthe breaking of parity. Considering the odd moment

symmetry. Equatiori87) is exact for the diamond lattice as ta,oZZ(X3—3y2X)G(X,Y) [cf. Eq. (42)], one finds t_s,o

well. =t30/My— 3. Thus, as in the diamond case, parity breaking
To discuss parity-breaking effects we must consider od@ffects vanish asllé, i.e., pp,=3.

moments ofG(x). In particular one finds that, favi;—0,

C. Analysis to order /N

_305%’ i (90) In the previous subsection we computed the expopent
T Mg 6\/§ for N—o for lattices with cubic symmetry, finding=2.
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Now we want to compute the M/corrections, i.e., the value rdi2+21-2)r(d-2)
of o=0,=7n— 17, [cf. Eq. (29)], which is the anomalous B':(4_d)F(d+2I—3)F(d/2—1)’ 97

dimension of the operataD,«(x). More generally we can
compute the exponentg, defined in Eq(26) for arbitraryl.

ice that in thi il al btain theN £ d and we have discarded rotationally invariant terms propor-
Notice that in this way we will also obtain theNL.Correction tional tor, since they will not contribute to the final result.

to p for t.he tria.mgular Iattice_that depends.o)ﬁa. ) We must now identify the singular contribution in the
In d dimensions, we consider the following representatloqimiting form of Eq. (92):

of the inverse two-point function where tl@(1/N) correc-

tion has been included:

2111

- 1( d p
ﬂilGil(k)—>k2+rk2|+ Nf WAO(p)[l_rBIF

d
BTG () =B 25 MG+ K+ %J —d(;’ p) A(p)
K X[(p+K)>+r(p+k)2] !

. (92 +rk?

~k? 1—i In k 1—i In k
N7]1 N772|,1 .

1
X = T2 M2
p+k3+M% P +Mg
Here k? is the inverse lattice propagator defined in E8), (98)

Zgis th tant defi in E¢h2 - .
6 Is the constant defined in E¢p2), and The coefficientsy; and#, ; are related to the W expansion

of the exponents; and 7y :

1( dd 1
a 93

A_—l<p>=—f g —— =
20 277 (q+pP+ MB) (a7 + M) =0

1

m) (99
The following statements can be checked explicitly in Eq.

(92) and hold to all orders of the N/ expansiongi) in the Nl 1 1

limit Mg—0 the functionG~*(k,Mg) is spherically sym- UZI:T“LO(W)' (100

metric (i.e., it depends only oly=k?/MZ, apart from an

overall factoy; (i) the only nonspherically symmetric con- By simple manipulations one obtains

tribution that may appear i~ *(k,Mg) to O(Mé) can be

reduced to a spherically symmetric function multiplied by B 4T (d—-2)
Q4(Kk). These statements are simply a consequence of apply- 71~ [(2—d/2)T(d/2—2)T(d/2—1)T(d/2+1)’
ing the discrete and continuous symmetry properties to all (101

integrals appearing in the asymptotic expansioMig of the
relevant Feynman integrals. They prove to all orders M 1/ and
the validity of the expansiof28).

To compute the anomalous dimensigg, to order 1N d(d—2) { r+unrd-2)
we will use the trick we explained in Sec. Il A. If one con- 772|,1:(d_2+4|)(d_4+4|){ r2l+d-3) |
siders a particular Hamiltonian such thg(y,Mg) =0 for (102

o<I=<1, thenG (k) has an expansion of the for(28)

with 5,— 7,7andg,(y)—g,7(y). In the 1N expansion, to  Therefore ford=3 we find
order 1N this can be achieved by considering Hamiltonians

such that, fok— 0 (to simplify the notation from now on we 32 1 )
) = 7= Pa= g +O| 5. 103
write | instead ofl ), TN AT 512N N2 (103
P=k2+rk2'+0(k2'*2), (94) Note that the coefficient of the leadingNL/term is very

small. Thus, at least foN sufficiently large, sayN=8,

V\/h(:;rekmEzﬂkiI . The limit Mg—0 can then be easily ob- Where the I expansion is known to work reasonably well,

tained by evaluating massless continuum integrals, and tal¢orrections to the Gaussian valuepbre very small.
ing the contribution proportional to, which is the only term Ford—2, 775 1— »;. Therefore in two dimensions and to
relevant to our computation. In this limit we obtain O(1/N), there are no corrections to the Gaussian value, i.e.,
the first coefficient of the expansion of the anomalous dimen-
— - p? sion is zero tdD(1/N). One might only observésuppressed
A 1(p)wA0 Yp) 1—rB|F , (95 logarithmic corrections to canonical scaling for &lllt is

easy to check in perturbation theory that this holds exactly
for all N=3.

The computation of the universal functi@l(y) is par-
_ 2 ticularly involved. The result is given in Appendix A. Here
['(2—di)I'(di2-1) . (96) Wwe will only give the values of the coefficientd of its
(4m)9°T (d—2) low-momentum expansiofcf. Eq. (81)]. We found

where

1
Ag(p)=5(p?)¥2 2
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d 1
di=W+O m f (104)

where d;=-0.002 06468, d,=0.00007378, ds=
—0.000 004 24, etc.

D. g expansion analysis

The critical exponentr and the scaling functiom,(y)

can also be evaluated in theexpansion. For this purpose we
calculated the one-particle irreducible two-point function?2

I'o,(k,Mg) defined in Eq(22). By a three-loop calculation
one finds

,N+2
Lo, (k;Mg)=Qq(k) + goTJz(ka Mg)

(N+2)(N+8)
_QST[J&l(kaMG)
+4J35k,Mg)]+0(g3), (105

where

d®p Qu(k—p)A(p,m)
= | G g (199
d®p Qu(k—p)A(p,m)?
Bakm= | o3 T (107
d®p A(p,m)Ag(p,m)
JaAk,m)= (2753 (i—p)2Q+Fr)n2 . (108
and
[ d%q 1
A(p'm)‘f (2m)3 [+ m2(q+ p) 2+ m?]
= Zmp arctans (109
B d3q Q4(a)
e~ | s e T
(110

By renormalizingFo4(k,MG) at k=0 according to Egs.

(22)—(24),_one obtains the corresponding renormalizatioqN

constantZ, and renormalized functioﬂi‘o4'R(k,MG). The

CAMPOSTRINI, PELISSETTO, ROSSI, AND VICARI 57

TABLE VI. For various values oN, we report estimates af
obtained by our strong-coupling analysis, from thil &xpansion,
from the resummation of thg expansion(see Sec. Il D [in this
case we give two numbers corresponding to the two choices: resum-
ming R(x) or R(x)/x?], and from theO(€?) term of thee expan-
sion.

N s.c. expansion N expansion @ expansion e expansion
0 0.041) 0.0119, 0.0141 0.0109
0.011) 0.0143, 0.0166 0.0130
0.021) 0.0156, 0.0177 0.0140
3 0.032) 0.0515 0.0160, 0.0179 0.0145
4 0.032) 0.0386 0.0158, 0.0174 0.0147
8 0.021) 0.0193 0.0139, 0.0148 0.0137
16 0.0093) 0.0096 0.0098, 0.0109 0.0109
32 0.0042) 0.0048 0.0058, 0.0059 0.0074

The scaling functiong,(y) is obtained from the zero-
momentum renormalized functidr“bARE Qu(K)f4(g,y), by

94(y)=f4(g*.y). By expandingf,(g,y) in powers ofy
aroundy=0, one finds

d=g? Nt 2 d; 112
i_g (N+8)2 i ( )
and
d,= 0 1+ gx0.105400- O( g2
d,= 3076 1—gx0.355629- O( g2 113
rm& —gXxo. (g9], (113
da= _ 32 1— g x0.696450- O(g2
3=~ 2533202100 9%0 (991,
etc.

In order to get estimates af and of the coefficientsl,
from the corresponding series, we have employed the resum-
mation procedure used in Sec. lll C. Results forare re-
ported in Table VI, and fod, in Table III.

E. An e-expansion analysis

To compute the exponents,, and g,(y) in the frame-
ork of the e expansion, we again calculated the renormal-
ized two-point one-particle irreducible function with an in-

critical exponentr is obtained by evaluating the anomalous sertion of the operatdD,(x); see Eq.(24). To orderO(e?)

dimension

. _9In(Z4lZ
704(9)=B(9)M

— 5408 N+2

— PN N2

(111

at the fixed-point value of the coupling, i.er= 704(9*).

we find
B 7 N+2 3
o=7n— 774—%(N+—8)26 +0(€°) (114
and
g —1+2N+284 /9k)Jg(k,1
ga(y)=1+€ N+8)2™ [Qa4(d/dk)JI4(k,1)
— Q43 9K)Is(K,1)|k=o]+ O(€%). (119
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The functionJ(k,m) is the finite part of the integral

dig di
J("’m):f 27 (2m)°

% Qu(k—p)
[g?+m?][(g+p)?+m?][(k—p)?+m?]?
(116

with the modified minimal subtractionMS) prescription.
The expansion ofj,(y) in powers ofy gives

_ 2 N2 d;+0 11
=€ NT8)? iTO(€) (117
and d;=-0.00354500, d,=0.00011715, ds;=

—0.000 005 99, etc.

F. A strong-coupling analysis

201

By applying the CPRM to the strong-coupling series of
04,0 and my, one can extract an unbiased estimateroby
computing the exponenrt=1— o from the resulting series
at the singularityxo=1. We analyzed this series by biased
IA’s. The estimates obr we obtained confirm universality
between the cubic and the diamond lattice, although the
analysis on the diamond lattice led in general to less stable
results. In Table VI, for selected values Nf we report our
estimates ofo, which are essentially obtained from the
analysis on the cubic lattice. In order to deriwefrom ov,
which is the quantity derived from the strong-coupling
analysis, we have used the valuesiofvailable in the lit-
erature. See, e.g., R4#3] for an updated collection of re-
sults obtained by various numerical and analytic methods.
The errors we report are rough estimates of the uncertainty
obtained by considering the spread of all the analyses we
performed. The values af are very small for all values of
N, and for largeN, sayN=10, they are consistent with the
correspondind(1/N) prediction, cf. Eq(103.

In order to estimate the first nontrivial coefficiethf of

Anisotropy in the two-point function can be studied for the expansion 0@4(y), see Eq(81), one may consider the
finite values ofN by analyzing the strong-coupling expan- quantityr, defined in Eq(83). However, as we did for the

sion of its lowest nonspherical moments.

analysis ofc; in Sec. lll, it is better to consider another

In order to computer, the correction to the Gaussian quantity r ; which is defined so that ;=0 for N=co for all
value of p, we analyze the strong-coupling expansion of theg< g.. For the cubic lattice

ratio g4 o/Mm,, which behaves as

Qa0 - ov
m, Me ~(T=Tc)

(118

for T->T,. We recall that in the N expansionv=1
+O(1N), and for N=0,1,2,3 »=0.588, »=0.630,
v=0.670,r=0.705, respectivelj2]. DPA’s and |A’s of the
available strong-coupling series of the ratjg,/m, on both

cubic and diamond lattices turned out not to be sufficiently

stable to provide satisfactory estimates @fat any finite
value ofN.

— Q4,1Mé Mé
r1—2—m+5, (121)
while for the diamond lattice
1+ EME+EME PRIV
r,= 5 — . (122
1+4M32 22040

In the critical limit r_lﬂdl. The estimates ofl; obtained

A better analysis has been obtained by employing the sOygm the analysis of the strong-coupling seriesr_qf[65] are

called critical point renormalization methd@€PRM) [62].

reported in Table Ill. Universality between the cubic and

The idea of the CPRM is the following: start from two series gjamond lattice is again substantially verified, although the

D(x) andE(x), which are singular at the same poky,

D(X)=2, dix'~(xo—x)"?,

(119
E()=2 exX'~(X—X) ¢
I
and construct a new series by
d; .
FO)=2, X (120
[ i

The functionF(x) is singular atx=1 and forx— 1 behaves
as F(x)~(1-x)"%, where ¢=1+6—e. Therefore the

diamond lattice provides in most cases less precise results.
The value ofd, is very small for all values oN. At largeN
the strong-coupling estimate df is in good agreement with
the largeN prediction(104). The estimates are also in satis-
factory agreement with the results obtained from ghex-
pansion and the expansion.

Finally we computep, for the diamond lattice. For a
Gaussian theoryg,=3 and thugj; o— const forMg—0. In
general, for finite values oN, we write p,=3+0,. The

exponentr, is determined from the critical behavior@,o,
indeedq3,o~Mgp. In order to estimater,, we applied the

CPRM to the series|3 and y. We found G<o,=<0.01 for
all N=0.

G. The two-dimensional Ising model

analysis ofF(x) provides an unbiased estimate of the differ-
ence between the critical exponents of the two functions We conclude this section by considering the two-
D(x) andE(x). Moreover the serieB(x) may be analyzed dimensional Ising model, for which we present an argument
by employing biased approximants with a singularityxgt  showing that the anomalous dimension of the irrelevant op-
=1. erators breaking rotational invariance is zero.
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Let us consider first the square lattice. In this case, foinvariance, turns out to be 2 with very smalldependent
sufficiently large values ofx| the asymptotic behavior of corrections for the lattices with cubic symmetry. Notice that

G(x) on the square lattice can be written in the foi®6] this behavior is universal and thus should appear in all physi-
cal systems that have cubic symmetry. The reader should
d’p i Z(B) note thatp is different from the exponent, which param-
G~ (2m)° € M2(B8)+p?’ (123 etrizes the leading correction to scaling and which is related
to a different rotationally invariant irrelevant operator. Mod-
wherep2=3 4 siri(p /2). els defined on lattices with basis, such as the diamond lattice,
P " (P/2) show also a breaking of the parity symmetry. We find that
1+2%)1? these effects vanish a4°?, with p,~3 for all values ofN.
2p)=1a-2r-az g o P .
z We have also calculated the universal functipqy). For

y=1, we findg,(y)~1 with very small corrections.

and In our study we considered several approaches, based on
, (1+72)2 1/N, g, €, and strong-coupling expansions. All results are in
M<(B)= -2 —4, (125  good agreement.
In two dimensions we showed that=2 for the square
and we have introduced the auxiliary varialalgg) =tanhg. ~ lattice for allN=3 andN=1. We conjecture that this is a

This shows that at large distances the breaking of rotationdleneral result, valid for all values ®. Similar arguments
invariance is identical to that of the massive Gaussian modetPPly to the triangulathoneycomb lattice: we conjecture
with nearest-neighbor interactions. Therefpre2 exactly.  P=4 (pp=3) for all N.

This value ofp is confirmed by a strong-coupling analysis
of the momentsy,,, using the available 21st-order strong- ACKNOWLEDGMENTS
coupling serieg39]. In particular, on the square lattice we
found q40/m,—1/4 for B— B, within an uncertainty of
0(107%).

A formula analogous to Eq123) has been conjectured in
Ref. [39] for the Ising model on triangular and honeycomb
lattices. Thus, also on these lattices, the pattern of breaking APPENDIX A: O(1/N) CALCULATIONS
of rotation invariancgand parity in the case of the honey- . . . R
comb lattice should be that of the corresponding Gaussian In this Appendix we present a simple derivation of all the

theories. which have been described in Sec. IV B. If the Con_results that are needed in order to construct explicitly the

jecture of Ref[39] is correct, we havg=4 for the triangu- 1/N, g, ande expansions up to three loops presented in Sec.
lar lattice andp,=3 for the Floneycomb lattice Ill. Our starting point is the observation that most of the two-
D .

Again, an analysis of the strong-coupling expansion ofnd three-loop calculations needed in the relevant perturba-

G(x) on the triangular and honeycomb lattices supports congve. CZICUIat'dO”S arecljgcllud;ehd, apar: from r?thlez'tnwa:: ?rllge-
vincingly this conjecture. raic dependences d, in the one-loop calculation of the

1/N expansion for the two-point function. As we shall show,
the 1N results can be expanded gnand e in order to re-
cover all the corresponding contributions. Let us therefore
For lattice models withO(N) symmetry we studied the start with the evaluation of the renormalized self-energy to
problem of the recovery of rotational invariance in the criti- O(1/N) in arbitrary dimensiord and for arbitrary bare cou-
cal limit. Anisotropic effects vanish asl%, whenMg—0.  pling g in the N-componentp? theory.
The universal critical exponeni, which is related to the We introduce the dressed composite propagaeomet-
critical dimension of the leading operator breaking rotationalric sum of bubble insertions in thé* vertex):

We thank Robert Shrock for useful correspondence on the
Ising model. Discussions with Alan Sokal are also gratefully
acknowledged.

H. Conclusions

m*~d=A"Y(y)+ S (A1)

PSSP 1 S S
(yng)_Z Ngy

(2m)9 p?+m? (p+k)?>+m? ' Ng,

wherey=k?/m?, and we have defined ti{egero-momentum subtractedimensionless renormalized dresseterse propa-
gator:

ATy = 47d1f dp 1 ] 1 1 A2
r (y)_m E (27T)d p2+m2[(p+k)2+m2 p2_*_m2 ’ ( )
and the four-pointlargeN) coupling renormalized at zero momentum
3 _A-%0 )_r(z— d/2)+3m4‘d_1“(2—d/2) N+8 A3)
Ng 9o am® T Ny 2(4m% Ng
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where we have rescaled the coupling for convenience, generalizing a rather standard three-dimensional prescription. The
integration(A2) can be explicitly performed, and one obtains

d/2—2
y d13 vy
(”z) F<2_§’§’§’y+4

which is a regular function odl for all d=4.
The renormalizedD(1/N) contribution to the self-energysee Eq.(56)] can now be evaluated by the formal expression

1T(2-df2)
E (477)d/2

_1} I'2—d/2)

24 o) (Ad)

A Ny)=

J
</>1(y.g)=cr(y,g)—cr(O,g)—ywa(y,g)lwo, (A5)

4 2(4m@% 1 d% g 1

T(2—d2)) 2m%11gs.(p2/m?) (p+k)Z+m?’ (A6)

o(y,g)=m?

and the subtractions that are symbolically indicated in(B§) must be done before performing the integration in &®) in
order to obtain finite quantities in all steps of the derivation. To this purpose, it is convenient to perform first the angular
integration, by noticing that

2(47T)d/2 ddp m27d s
f(p%/m?)=2B(d/2,2— d/2 —1f 2)9271dz f(z)h(z, A7
where
h(z,y) fﬂ on o (A8)
zy)= .
Y B((d—1)/2,3)Jo  z+y+1+2\zycosé
The subtraction indicated in EGA5) now simply amounts to replacing in EGA6)
h h h(z,0 i h =h ! Y azy A9
(z,y)—h(z,y)—h(z, )—y@ ZY)ly=0=h(zy)= 75+ 1722 d1+2° (A9)

By replacingg_with its largeN fixed point vaIueEk =1 in Eq. (A3), one finds theD(1/N) contribution to the scaling

functionéo(y), which in turn is simply the continuuriN-vector model expression of the self-energy. This is the way('Eq).
is generated, by setting=3 in the general expression.

Equation(A6) is also the starting point for thg and e expansion up to three loops. It is indeed straightforward to obtain
a representation of the leadi@g1/N) contributions to the self-energy as a power serieg:in

b1(y.9)=— 0%e(y) + g%ea(y) +O(g¥), (A10)
where we have defined the functions
- 2 o 1 y 4zy
—(_1\n d/i2 -1 n—-1 _ _
I
and we exploited the trivial consequence of the definition Eq. + O(?). (A12)

(A11): ¢,(y)=0. Restoring the correct dependenceNofor

arbitrary(and not only very largevalues ofN in front of the  We must keep in mind that the functiogs,(y) carry a de-

functionse, and¢3 is now simply a combinatorial problem, pendence on the dimensionality and the scaling function

WI’ESG squticT Ieads~to the complete three-loops result fo&o(y) is the value taken b)f(ay) when evaluated at the

f(g,y)zmaze—l(y)/(;—l(o); fixed point value? of the renormalized coupling, where
g* is in turn a function of the dimensionality and it is ob-
tained by evaluating the zero of tigefunction. We may now

f(g_y)=1+y+? N+2 2Ez(y)+? 2;3()/) qh_oose two differe_nt strategies. The_ first simpl_y amounts to
' (N+8) (N+8) fixing d to the physical value we are interested in and replac-
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ing ? with the numerical valudpossibly evaluated by a
higher-order expansion of thgfunction at fixed dimension

We may, however, decide to expand the functignéy) in
the parametee=4—d around their value ad=4, pe_rform a

similar expansion for thgs function, and then findy* as a
series ine [67]:

3(3N+14)
(N+8)Z €t

g*=1+ +0(€?). (A13)

The functionse,(y) and ¢3(y) we have introduced in Sec.

Il C are strictly related top,(y) and ¢3(y) calculated for
d=3, indeed

@2()=02(¥)|d=3,

(A14)

p3(y)= [Es(y) - 252()’)]1:!:3-
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We now present some details of the calculation to ordefyhere we have defined

1/N of the scaling functiorg,(y). The starting point is

Qq( )
Tk

1
94(y,MG>=A—/4f a0 (k) 1k, Mg),

(A15)

whered?Q (k) indicates the normalized measure on tide (

—1)-dimensional sphere and

2401 )
(A16)
Using Eq.(92) we get
11 ~ Qa(k)
9a(y.Mg)=€s0t J\_/'4J' ddﬂ(k)(—sz)T
d N
d’q A(q) (A17)

(2m® (q+k)2+MZ’
From Eq.(21), we get finally

11 d
89 =1 57| g AT (,6%0)
FAW@Iy.0%D) (18

where “subtr” indicates the integramj computed fpr-0,
A(q) is the continuum counterpart af(q):

— (subty],

2 (di2) —2
A )_1r(2 dlz)(q_+
(4m)92 \ 4
d13 M2\ 1
XF 2—5,5,5 1+ q2 , (A19)

1 N ~ Qu(k)Qu(a)
2 A2 2y T d d
I1(k%,q .MG)—N‘J d Q(k)f d Q(Q)mg
= (K20?)¥%F 4 4(2), (A20)
Q4(k)Q4(q+k)
2 2 2 d d
|2(k 1q7MG) Jko)JdQ [(q+k)2+MG]2
(A21)
(k2)3 2\ 1/2
-5 [F'do(z>+4(ﬂ) F4a(2)
6 2 3/2
HorF )+ q_z) Fyd2)
q2 2
|| Flad@|, (A22)
>+ k2 + M2
== C A23
N (29
21=d21 1 (d—2)1

Fall@) = Fa—D2)d+1-3)!

X (— 1)e (d— 3)m/2(z _1)(d 3)/4Q(!i(d3 /g o(2).

(A24)

Here Q,(2) is the associated Legendre function of the sec-
ond kind (see Ref[68], Secs. 8.7 and 8)8Notice that for
=0 Fqo(2)=q%k?h(q?/MZ k?/M3). As expected the fi-
nal result is universal.

APPENDIX B: STRONG-COUPLING EXPANSION
OF G(x) ON THE CUBIC LATTICE

Presenting th-order strong-coupling results for the two-
point Green'’s function would naively imply writing down as
many coefficients as the number of lattice sites that can be
reached by an-step random walk starting from the origin
(up to discrete lattice symmetriedt is interesting to notice
the relationship existing between the numlmgrof lattice
points (not related by a lattice symmejrthat lie at a given
lattice distance from the origin and the number of indepen-
dent lattice-symmetric function®,,(k)(k?)'~™. One can
easily get convinced that, on a hypercubic lattice, the number
of functions Q)(k)(k?)'~™ is the same as the number of
monomials of total degrekin thed variablesk? that are not
related by a lattice symmetiyhat is, the number of indepen-
dent, homogeneous lattice-symmetric dedrgmlynomials
in the kiz). This number in turn is equal to that of the parti-
tions of | into d ordered non-negative integers, and this is
nothing but the number of independent lattice points at a
lattice distancd (where ordering ensures independence by
elimination of copies obtained by permutatioAs a corol-
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lary, the relationshig,=n,—n,_; holds for arbitraryd on  where
hypercubic lattice$11].
In the case of three-dimensional hypercubic lattices, one
can show thap,=|1/6]+ 1 with the exception of=6k+1 in _ )
which casep,=k, while n, is the integer nearest tol ( M(U’Z)_% Gyn(zv.y). (B7)
+3)?/12 and the sunE!:everni is the integer nearest td (

+4)3/72. This would mean roughlyl &4)3/72 coefficients  \hen expanding in powers ¢, the system takes a triangu-
for the Ith-order of the strong-coupling expansion on the|ar strycture and, as expected, it admits a solution whose
cubic lattice. This number can be sensibly redu@sy/mp-  nontrivial terms are only those corresponding to the equiva-
totically by a factor 27 on the cubic lattigewithout l0Sing  |ence classes of sites that can be reached /Byrandom
any physical information, by noticing that the inverse two- steps.

point function, when represented in coordinate space, in- ggjutions forG~1(x) can be found for arbitrar\. In
volves only points that can be reached Hy/8|-step random  1gp1e VI we only exhibitG=1(x) for N=0, 1, 2, 3, 4
walk. This fact can be traced to the one-particle irreducibley,q 16. We choose a representative of the equivalence class
nature of the inverse correlation. As a matter of fact, insteacli)y the prescription,=x,=x;=0. We may notice as a gen-
of the 93 coefficients needed to represent the 15th-order CoRs 4| feature that in the class representedxhy 1, X,=Xs
tributions t0 G(x), only 8 coefficients are enough for the _q the first nontrivial contribution is of orden@+2 (3x,

corresponding contribution to the inverse functién 1(x), +4 whenN=1). WhenN=0,1 a number of seemingly non-
which we construct by the following procedute similar  ivial coefficients turn out té be zero.
representation was used for the Ising model in a magnetic

field in [6]).
We introduce the equivalence classes of lattice sites under APPENDIX C: STRONG-COUPLING SERIES
symmetry transformations and choose a representgtioe OF x AND m; ON THE DIAMOND LATTICE
each class: whenever-y thenG(x) = G(y). We define the On the diamond lattice we have calculated the strong-
form factor” of the equivalence class coupling expansion o6(x) up to 21st order. In the charac-

terlike approacH42], the possibility of reaching larger or-
ders than on the cubic lattice is related to the smaller
Q(y)=2, €PX, (B1)  coordination number. However, longer series do not neces-
x=y sarily mean that more precise results can be obtained from
) , their analysis. This is essentially related to the approach to
and represent the Fourier transform®x) according to the asymptotic regime of the corresponding strong-coupling
expansion, which is expected to occur later on lattices with
smaller coordination number. 21st-order series on the dia-
G(p)=2, Q(y)G(y). (B2) mond lattice provide estimates of the exponeptsind v,
y which are, as we shall see fof=1,2,3, substantially con-
istent with the results obtained by analyzing series on other
attices[see, for example, Ref43] where series t®(8%Y)
for the cubic and bcc lattice have been presented and ana-
lyzed], but less precise.
On the diamond lattice we have defined a mass-gap esti-
G Yp) =2, PG Yx)=> Q(y)G Xy). (B3) mator according to the following procedure. Let us param-
X y

etrize the Cartesian coordinates of the sitexf the diamond
In practice we exploit the property lattice in the form x=2li9+p7,, lieZ, p=01, 7,
= (1N3) (1.1,1),7:= (21W3) (0,1,1),m, = (21Y3) (1,0,1),
73=(2/y3) (1,1,0). One may then consider the wall-wall
Q(v)Q(Y)=2, n(zv,y)Q(2), (B4)  correlation function defined constructing walls orthogonal to
z

w= (1/J/2) (—1,1,0), which is the direction orthogonal to
two among the links starting from a site. We define

The inverse Fourier transform enjoys the symmetries o
G(x) and satisfies the relationships

where

NZo,y)= 2 Suix (B5) Gu(t=X-W)= >, G(x), (C1)

t=cst
u~v,X~y

are integer numbers, and reduce the problem of evaluatinghere the sum is performed over all sites with the same
G !(y) to that of solving the linear system of equations ~ =x-w= (2/y/3) (I,—1,). One can prove thab,(t) enjoys
the property of exponentiation. The mass gaan be ex-
tracted from the long-distance behavior @f,(t). Fort>1
2 G Hv)M(v,2)= 8,0, (B6) GW(_t)oce‘”‘. In view of a_strong-coupling analysis, it is con-
v ’ venient to use the quantity
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TABLE VII. Coefficients of the strong-coupling expansion®f (x) on the cubic lattice. The representative of each equivalence class

CAMPOSTRINI, PELISSETTO, ROSSI, AND VICARI

is chosen by;=x,=x3=0. | indicates the order.

Xy X, X | N=0 N=1 N=2 N=3 N=4 N=16
0 0 0 0 1 1 1 1 1 1

1 0 0 1 1 —1 ~1 1 1 —1

0 0 0 2 6 6 6 6 6 6

1 0 0 3 -1 -3 -3 2 =i -1

0 0 0 4 30 26 24 4 22 2

1 0 0 5 -13 - -2 -2 -4 -2

0 0 0 6 366 4204 e e F E

1 1 0 6 2 0 -1 - -2 -3

1 0 0 7 —197 — 33604 -~z — 48 - -

0 0 0 8 5022 346266 Loges 188za0n o o

1 1 0 8 24 -16 .. 18876 -1 -L

2 0 0 8 4 0 -1 . -3 -5

1 0 0 9 —2889 g -5k S -5 — B

1 1 1 9 6 -8 - —4 -3 -5

2 1 0 9 1 0 -1 — -3 —3

0 0 o 10 76062 21434004 - 8484906795 21078 1969903274

1 1 0 10 258 — %2 — a5 — — 5 —

2 0 0 10 116 —24 588 — e -5 5

1 0 0 11 -45357 o — — — -
1 1 1 11 72 —240 — 2% — 370064 — 85 —

2 1 0 11 ~15 —24 1 — 12304 — 38 -

3 0 o 1 0 0 -3 - -4 -3

0 0 0 12 1230462 i o s o gzl Iy
1 1 0 12 2460 — s — 418 — s — 158 —
2 0 0 12 1944 —896 — 43y — 35307888 — 42376 -
2 1 1 12 0 —24 33 — 390% —&¢ -5

2 2 0o 12 0 0 -1 — -4 -3%

3 1 0o 12 0 0 =i e -3 —

1 0 0 13 —745189  —ORRANet _EEDRT e o —
1 1 1 13 ~678 — 288 — Bl — o —
2 1 0 13 — 476 ~1120 — 431817 — 241088068 — 818345 —
3 0 0o 13 0 —24 133 — 1500984 -5 — s

0 0 0 14 20787102 MR ZSERRSNS ORISRt I A
1 1 0 14 17378 — et — e S -LpEEpR B
2 0 0 14 29088 —20744 — 8258120 —lo0i5a88%52 21040024 — B s
2 1 1 14 0 —1456 — 245 — 278755152 — 628336 — 2530
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TABLE VII. (Continued)
X1 Xo X3 | N=0 N=1 N=2 N=3 N=4 N=16
2425 42568048 103640 52536352
2 2 0 14 32 —144 8 ~ 7109375 243 T 177147
206 1427216 8294 4477778
3 1 0 14 -2 —32 -3 ~ 715625 ~ 81 ~ 759049
1 288 16 1280
4 0 0 14 0 0 -3 — &5 —5 — 5187
2597638257068408 3549389785799 64161784918165784 25033873577 305112195055173211
1 0 0 15 —12672757 T 638512875 ~ 1935360 T 65143203125 T 42525 T 24138249510375
7317712 317601607 555516678768 92268604 2363546376656
1 1 1 15 —48624 ~ 763 ~ 72880 ~ 7 6015625 1215 T 146146275
154436 605816971 1403163936156 110231638 4917927730652
2 1 0 15 —16428 ~ 75 ~ T 17280 742109375 T T 3645 7438438825
8199 2141976 20954 4066162
2 2 1 15 30 —232 ~ 16 T 73125 27 76561
192203 11182524776 10592632 133926221584
3 0 0 15 —400 —1752 -T2 ~ T 3828125 ~ T 3645 T 87687765
1681 90832 506 953338
3 1 1 15 —-10 —48 16 ~ 7625 -3 76561
13 11936 151 50545
3 2 0 15 -1 0 ) ~ 3125 — 27 6561
1 648 28 11840
4 1 0 15 0 0 16 T 3125 81 19683
2 4 3
M&= 3 (cosh\3u—1), (C2)

which has the propertyly— o for u—0 and has a regular strong-coupling series. In the lafdamit and for B< .

Ma/ME=1.

In the following we report the 21st-order strong-coupling seriey afnd m, calculated on the diamond lattice, foF
=1,2,3. 27th-order strong-coupling series fr=0, i.e., for the self-avoiding walk model, can be found in Réb].

x=1+48+12p%+

230044448310

10433
3

+1008%+

2098649204

1.N=1

43288° . 12128p° . 71132837 . 13245238  498940883°

15 15
1159304852812

315 21
623963846689@3

2835

4004471579473

4725

155925

38111566772667B%°

90726183847355B°

31185

6081075

635228192216156408"

14189175

5223277546855685898'8

49116375

8158159040187565842g8°

42567525

10854718875

7445728982539738238%° 64202099705158173667398561

32564156625

1856156927625

m,=4 8+32 g%+

618718975875

194896477400625

+0(B%).

(C3

48833 . 20483* . 388883° . 4176643° . 1002793687 . 333063683% 9716016083°

3 15 45 315 315 2835
1545395046410 53248206529 493973008537@'2 19644374384545B8° 4168605624019328
14175 155925 467775 6081075 42567525

188065240470724112'° 561744708980235008'¢ 28352355075085440248""
638512875 638512875 10854718875
57966531061027107328% 42081281751167641189218° 6157593330060529186946R5°
7514805375 1856156927625 9280784638125
37696556941296724618984388" ”
B). (C4)

194896477400625
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We have analyzed the series ptby using the m/l/k] first-order IA’s with

m+1+k+2=21,
(CH

[(n—2)/3]—2<m,l k<[(n—2)/3]+2.
We have obtaine@.=0.3697(1) andy=1.238(14). An estimate of can be also obtained by applying the CPRM to the
seriesy? and y, as explained in Sec. IV F. By employing biased IA’s, one finds1.2534). By applying the CPRM to the
seriesm, andy, and using biased IA’s, one finds=0.6454). These values oy andv are slightly larger than the available
estimates obtained by other techniq(fsld-theoretical approaches giye=1.240 andv=0.630), or strong-coupling expan-

sion on other lattices, but not totally inconsistent. One should not forget that the reported error does not take into account the
systematic errors due to confluent singularities, but is just the spread of the results of the various IA’s indicatg€8). Eq.

2.N=2

2414587 109258% 8897038° 23874838
2 T2 TTe T e

2296877331 2561755182 115160360938 4084968004B'* 52055050702B° 345789467539B°
YT %% " 90 15120 20160 96768 241920

49599579431200817 2188572410969058% 173608313274399468'° 76543471229019874%°
13063680 T 21772800 T 653184000 * 108864000

534431324234805099%* )
+0(B?).
2874009600

x=1+4B+12p%+3483+96 B+

+7438%+

814 3%
3

(C6)

75348% 26488B° 35630587 2894443% 183265038° 42659326310
m,=4 f+325%+1623°+ 6728+ Py Py Py Fy ¥, ¥

3 3 12 3 60 45
312591064%“+ 1176454982312+ 78423473449313+ 577822206313314+ 10806903451990B8°
1080 135 3024 7560 483840
58770348791597916+ 2438451226150500,/.1:17+ 4366098850964899/918+ 9954936929950180903*°
90720 13063680 8164800 653184000
1764942584095467283%° 17548832563614030822¢7* -
+ +0(B?). (C7)
40824000 14370048000

By performing an IA analysis of the series pf one findsB.=0.3845(2) andy=1.332). By applying the CPRM to the
seriesy? and y, and employing biased IA’s, one finds=1.341). By applying the CPRM to the series, and y, and using
biased IA’s, one finde'=0.6898). These results are substantially consistent with the available estimatesiatfined on
other lattices and by other approaclisse, e.g., Ref§43] and[2]).

3.N=3

1683% 468pB* 9144pB° 1234568° 6556887 8737088° 1282705683°
5 "T85 3 < 175 3 175 ' 9625

1181885347;810+ 200711703892$%n+ 526298799585612+ 1973906542032313+ 2569671437073
336875 21896875 21896875 3128125 15640625

277395071474138256'° 5048136975344060076'° 1747312876419771883178"

x=1+4p8+12p%+

65143203125 * 456002421875 * 60648322109375
355238833504052530786%3°% 32070882115870547276723B2° 82941862934668439888643B6°
476522530859375 + 16678288580078125 + 16678288580078125

2856126711936866621615B3*

2
>21860716706875 T OB (o)




m,=4 8+32 8%+

TWO-POINT CORRELATION FUNCTION OF THREE ..
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80833 . 33283% . 172408° . 14984963° . 497859237 N 1595929688 3911587443°

5 5 7 175 175 175 1375
2928715499580 8170771755824 169326765636098'° 495146153921968*3
336875 3128125 21896875 21896875
7166586778308998* 17477880825149450Q8'° 2437551486949994298g8°
109484375 9306171875 456002421875

91627122308762345759918'

20225106788136149891015B8°

19778750840713858434523658%

60648322109375 476522530859375 16678288580078125
21994072978677629556242688° 34998691725014346631615751088 o 522 cg
667131543203125 (B). €9

383600637341796875

By performing an IA analysis of the series pf one findsg.=0.3951(2) andy=1.422). We mention that singularities
approximately as far to the origin g3, have been detected by our analysis, indeed we found two singularitigs=at
+i0.39. By applying the CPRM to the serig$ and y,and employing biased IA’s, one obtais=1.421). By applying the
CPRM to the seriem, andy, and using biased IA’s, one finds=0.7264). These results are slightly largemnd less precige
than the values obtained on other lattigese, e.g., Ref43]), or by other techniquetsee, e.g., Ref2]), but substantially

consistent.
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